
9 10 10.95 12

A Speci�cation for

the Synergy File System

William R. Bevier

Richard Cohen

Je� Turner 1

Technical Report 120 September, 1995

Computational Logic, Inc.

1717 West Sixth Street, Suite 290

Austin, Texas 78703-4776

TEL: +1 512 322 9951

FAX: +1 512 322 0656

EMAIL: bevier@cli.com, cohen@cli.com, sjt@tycho.ncsc.mil

Copyright c
 2004 Computational Logic, Inc.

1National Security Agency, R23

Contents

1 Introduction 1

2 Preliminaries 2

3 The Basic File Space 4

4 The File Space 6

5 The File Table 14

6 Processes 19

7 Garbage Collection 21

8 The Basic Access System 22

9 Discretionary Access Control 27

10 The Unix File System Interface 30

11 Mandatory Access Controls 36

12 The Synergy File System Interface 38

13 Reactions to the Z notation 42

14 Errors Uncovered by ACL2 Model 43

CLI Technical Report 120 1

1 Introduction

This document contains a Z speci�cation [Spivey, 1989] for a subset of the user interface functions of the

Synergy �le system. The Synergy �le system is intended to be compatible with the Unix �le system, but

include additional constraints on behavior related to security. Morgan and Sufrin have previously speci�ed

the Unix �le system interface [Morgan and Sufrin, 1987]. We have re-speci�ed this interface to include

features they did not treat, for example, discretionary access control. Our speci�cation is in
uenced by the

descriptions of the Unix �le system given by The Design of the Unix Operating System [Bach, 1986] and The

Design and Implementation of the 4.3BSD UNIX Operation System[Le�er et al., 1989]. Additional details

have been gleaned from the UNIX User's Reference Manual for 4.3BSD [CSRG, 1986] and Steven's treatise

on Unix programming [Stevens, 1992].

The work described by this paper was performed as a subproject of the Synergy project, whose primary

goal is to develop policy-
exible security architectures that meet the needs of both the DoD (separation of

data with high assurance) and the commercial world (
exibility, larger market than DoD). This work will

serve as a foundation for several future projects. First, we will continue to articulate this speci�cation in

order to fully capture the design and interface of a policy-independent �le system interface. Ultimately, this

document should server as a programmer's manual for the �le system. Second, we will use it as the highest

level speci�cation in a proof that the decomposition of the interface into a number of independent servers is

valid.

In building a model of a system one must make choices regarding level of abstraction. These choices

reveal properties of interest and ignore others. We are interested in mandatory and discretionary access

controls on �les. We are less interested in covert channels that may be created by these mechanisms. We

therefore ignore limitations on virtually all resources. Such limitations can be introduced gradually to allow

analysis of the channels they produce.

We have left error reporting and return codes out of our model. The model does specify the preconditions

necessary for successful operations within the �le system. We simply do not describe the e�ect of an operation

if its preconditions are not met.

Section 2 of this report contains de�nitions of some primitive Z functions that are used elsewhere. Sub-

sequent sections incrementally specify aspects of the �le system interface. The following table summarizes

the concepts that are introduced.

State Concepts Introduced Operations Introduced

Basic File Space �les, create, destroy,

�le identi�ers read, write

File Space directories, pathnames link, unlink

File Table access modes, �le position open, close

Processes processes, fork process,

�le descriptors duplicate fd

Garbage Collection reclaiming inaccessible �les

Basic Access System

DAC user, group, �le permissions

Unix FS Interface current process, working directory

DAC checks for operations

MAC security context

Synergy FS Interface MAC checks for operations get/set context

CLI Technical Report 120 2

2 Preliminaries

We presume the reader is familiar with the Z notation (e.g., has access to the Z Reference Manual

[Spivey, 1989]).

Naming Conventions

In general the words \create" and \destroy", \link" and \unlink" are used to describe �le operations. The

words \add" and \delete" are used to describe operations on other data structures/state components. One

exception is the use of \create" and \destroy" to name the operations that create and destroy �le and process

attributes in the DAC and MAC layers.

Some Z preliminaries

In the Z notation, a sequence of length n is a mapping from natural numbers between 1 and n to the

individual elements of the sequence. That is, sequence indexing is 1-origin.

The function Nthtail returns the subsequence of a sequence beginning at a given o�set. Essentially, it

skips n things, and gives a new sequence starting there. Note that for all sequences s, nthtail(0; s) = s.

That is, an o�set of 0 skips nothing at the beginning of a sequence. This is equivalent to Morgan and Sufrin's

function after.

[X]

nthtail : � seqX! seqX

8n : ; s : seqX �
dom(nthtail(n; s)) = (1 : :#s� n) ^
(8 i : �

(i+ n) 2 dom s) (nthtail(n; s))(i) = s(i+ n))

Shift adjusts the domain of a sequence forward by some o�set. Morgan and Sufrin de�ne the same

function, but make it an in�x operator.

[X]

shift : � seqX! (X)

8n : ; s : seqX �
dom(shift(n; s)) = fi : dom s � i+ ng ^
(8 i : dom(shift(n; s)) �

(shift(n; s))(i) = s(i� n))

Recall that the sequence ha;bi denotes the mapping f 1 7!a; 2 7! b g. The expression shift(3; ha;bi)
denotes the mapping f(3 + 1) 7! a; (3 + 2) 7! bg, which is f4 7! a; 5 7! bg).

Remarks on Z style

We like schema composition: the pipe () and semi-colon () operators. We think of compositions as data-
ow

diagrams. Pipes connect input and output variables; semi-colon connects initial and �nal states.

What does this view mean about our style of Z usage? We tend to de�ne intermediate schemas for one

of four uses:

CLI Technical Report 120 3

� system states,

� state transitions, for use with semi-colon composition,

� data translations, for use with pipes, or

� predicates, for use with logical connectives.

Each of these uses has a di�erent characteristic style. State transitions typically include �State or �State

for some schema State. Data translations typically include both input and output variables, with some

axioms de�ning a relation between them. A predicate typically has input variables, but no output variables.

It includes an axiom part (i.e., \the part below the line") that describes some required properties of the

input variables and/or the system state.

Of course, we also de�ne schemas that are merely intended to encapsulate state or de�ne some functions

or sets that will be included in later schemas.

Things Left Out of the Model

Our intent is to model signi�cant aspects of the user-program interface to the Synergy �le system. Since the

Synergy �le system interface includes the Unix �le system interface as a subset, our model includes aspects

of UFS. Our model is not intended to be complete. It neither models all of the user-level operations of the

Synergy (or the Unix) �le system, nor does it model all the details of every operation included in the model.

Here is a list of some prominent aspects of UFS that we have not included in the SFS model. Some

have been left out merely because of time constraints. Some were aspects judged not necessary to produce

a useful model. Some were considered unimportant \implementation details" of UFS that show through at

the interface level. We have not modeled these aspects, but our model should admit consistent extensions

that do include some or all of these aspects.

1. error reporting

2. any resource limits (e.g., size of pathnames, etc.)

3. chdir, chroot (at least not yet)

4. chown, chgroup (at least not yet)

5. chmod (at least not yet)

6. mkdir, rmdir

7. mount points to multiple �le systems

8. read-only �le systems

9. real uid versus e�ective uid

10. real gid versus e�ective gid

11. execution of �les (and, hence, the set uid or set gid permissions)

12. the directory entries \." and \.."

13. super-user privileges or restrictions.

CLI Technical Report 120 4

14. special �les (not even their presence in the �le system)

15. soft links (also called symbolic links)

16. �le or inode creation/access/modi�cation times

17. blocking or non-blocking accesses

18. some open modes (e.g., excl)

19. locking

20. the 4.2 BSD directory manipulation operations: opendir, readdir, rewinddir, closedir, telldir, seekdir.

21. the stat system call

22. possible interaction between concurrent reading and writing of a �le. (Currently a �le is truncated to

zero length when it is opened for writing. See the de�nition of OpenFT, page 15.)

3 The Basic File Space

A �le is a sequence of bytes.

[BYTE]

FILE == seqBYTE

The function pad�le constructs a �le containing a sequence of pad bytes to a given length. Usually in

Unix, the pad byte is a representation of the number 0.

pad : BYTE

pad�le : ! FILE

8n : � pad�le(n) = (�k : 1 : : n � pad)

A �le identi�er is the internal name of a �le. The Unix implementation of a �le identi�er is an inode

number.

[FID]

The following schema introduces the association of a �le identi�er with the contents of a �le. We specify

four transitions on a basic �le space: create, destroy, read and write.

BasicFileSpace

fcontents : FID FILE

NewFID produces a �le identi�er not currently in use (i.e., a \new �le identi�er") as its output. Its

output will be piped into other schemas that take a �le identi�er as input.

CLI Technical Report 120 5

NewFid

BasicFileSpace

�d! : FID

�d! =2 dom fcontents

FileLength takes a �le identi�er as input, and produces an output whose value is the length of the �le's

contents. The output is named o�set.

FileLength

BasicFileSpace

�d? : FID

o�set! :

�d? 2 dom fcontents

o�set! = #(fcontents(�d?))

Create

File creation is a state transition on a BasicFileSpace. It takes a currently-unused �le identi�er as input,

and causes it to be bound to an empty �le in the �le space.

CreateBFS

�BasicFileSpace

�d? : FID

�d? =2 dom fcontents

fcontents0 = fcontents� f�d? 7! hig

Destroy

When a �le is destroyed, the association of a �le identi�er with the �le's contents is removed from the �le

space. 1

DestroyBFS

�BasicFileSpace

�d? : FID

�d? 2 dom fcontents

fcontents0 = f�d?g fcontents

1In a typical implementation the disk blocks belonging to the �le remain on disk. So removing the association of �d 7! �le

re
ects that the �le is no longer accessible via the �le system. Our model does not include the underlying storage medium (e.g.,

a disk system).

CLI Technical Report 120 6

Read

The input values of a read operation are a �le identi�er, an o�set where reading begins, and a length of data

to be read. The output value is the sequence of bytes that occurs at the given o�set in the �le. The length

of this sequence is the requested length or the remaining length to the end of the �le, whichever is smaller.

Thus, the length of the resulting sequence depends on the amount of data in the �le.

ReadBFS

�BasicFileSpace

�d? : FID

o�set?; length? :

data! : FILE

�d? 2 dom fcontents

data! = (1 : : length?) nthtail(o�set?; fcontents(�d?))

Write

The inputs to a write operation are a �le identi�er, an o�set at which writing begins, and a sequence of bytes

to be written. The new sequence of bytes replaces existing bytes in the designated range. The �le length is

increased if necessary, and if the o�set is longer than the initial �le length pad characters are inserted. 2

WriteBFS

�BasicFileSpace

�d? : FID

o�set? :

data? : FILE

�d? 2 dom fcontents

fcontents0 = fcontents�
f�d? 7! pad�le(o�set?)� fcontents(�d?) � shift(o�set?;data?)g

4 The File Space

We introduce the notions of pathname and directory. A pathname is a sequence of syllables. A directory is

a mapping from syllables to �le identi�ers.

[SYLLABLE]

PATHNAME == seqSYLLABLE

DIRECTORY == SYLLABLE FID

2These pad characters correspond to the \holes" that Unix permits within �les. These holes are read as pad characters

(normally 0). Our model does not explicitly include holes, but does permit writing passed the existing �le length, padding the

�le to the required o�set before writing. Thus read will see the pad characters in the \hole", as in the Unix implementation.

CLI Technical Report 120 7

We hypothesize the existence of a partial function ParseDir which creates an object of type

DIRECTORY from a �le (i.e., makes a �le understandable as a directory). The total functionUnParseDir

performs a mapping from directories back to �les (in order to store directories as �les). This mechanism al-

lows us to represent directories as �les in system state, but use a convenient representation when performing

\directory operations." UnParseDir is a total function because every directory object (i.e., mapping from

name to �le identi�er) can be represented as a �le (i.e., a sequence of bytes).

ParseDir : FILE DIRECTORY

UnParseDir : DIRECTORY ! FILE

ranUnParseDir � domParseDir

8d : DIRECTORY; s : SYLLABLE �
dom(ParseDir(UnParseDir(d))) = domd ^
(ParseDir(UnParseDir(d)))(s) = d(s)

dom(ParseDir(hi)) = ;

A �le may be one of two types, regular or directory.3 We apply the function ParseDir only to �les

of type directory.

FTYPE ::= regular j directory

As a convenient abstraction, we de�ne the partial function DirContents to map a �d identifying a

directory �le to the corresponding DIRECTORY value.

BasicFileSpace

DirContents : FID DIRECTORY

8�d : FID j �d 2 dom fcontents

^ fcontents(�d) 2 domParseDir �
DirContents(�d) = ParseDir(fcontents(�d))

The schema FileSpace introduces directories into the basic �le space. Each �le identi�er has a �le

type. Files of type directory are interpreted as directories with the function ParseDir. The range of each

directory �le contains �le identi�ers occurring in the �le space. There is a root �le identi�er that points to

the top of the �le tree.

The requirements on a �le space are that:

� each �le has a �le type (i.e., regular or directory),

� the root �le identi�er names a directory �le in the �le space,

� each directory �le can be interpreted as a directory structure,

� each directory provides names only for existing �les,

3We do not include the Unix concept of special �les in our model.

CLI Technical Report 120 8

� a directory that is pointed to by no other directory must either be empty or be the root directory.4

This last requirement restricts the graph of directories to be a tree structures. We have not included

speci�cations for the self and parent directory entries within a directory (i.e., \." and \.." in the Unix �le

system). 5

FileSpace

BasicFileSpace

ftype : FID FTYPE

Root�d : FID

dom ftype = dom fcontents

Root�d 2 dom fcontents ^ ftype(Root�d) = directory

8�d : dom fcontents �
ftype(�d) = directory)

fcontents(�d) 2 domParseDir

8�d : dom fcontents �
ftype(�d) = directory)

ran(DirContents(�d)) � dom fcontents

^ (parents == fparent �d : dom fcontents; name : SYLLABLE j
ftype(parent �d) = directory

^ DirContents(parent �d)(name) = �d �
parent �dg �

(#parents = 0)

, (�d = Root�d _ DirContents(�d) = ;))

Remark

on the

Z

Note the property dom ftype = dom fcontents. This is asserted wherever the FileSpace schema

is inherited. Note further that �FileSpace asserts this property for both the initial and the �nal

state variables. This means that we must be careful that any Create and Destroy operations that

include �FileSpace must update both ftype and fcontents.

We state that empty directories and regular �les can be disconnected from the �le space. Both regular

�les and directories may have multiple links (i.e., #parents > 1 in the de�nition of FileSpace).6

A �le is named by a pathname and a starting directory. The pathname identi�es the �le relative to the

starting directory.

The set legal pathnames in a FileSpace contains the pair (start�d;pn) if and only if pn is a legal

pathname relative to start�d in the �le space.

4Unix �le systems generally depend on a stronger version of this requirement: that a directory �le is pointed to by at most

one directory entry. Some Unix �le system implementations permit this invariant to be violated (e.g., by a privileged user).

However, they may not function properly when it is violated.
5The special directory entry \.." semi-violates the requirement that the directory structure be tree-structured.
6Most Unix systems only permit privileged processes to make new links to existing directories. It is not clear that it is every

desirable to have multiple links to directories. We have tried merely to model what exists.

CLI Technical Report 120 9

A pathname (syl1; syl2; : : : ; sylk) starting from a particular directory is legal in a �le space either if it

is the empty sequence or if the front of the pathname (i.e., excluding the last syllable) is a legal pathname

that names a directory and that directory maps the last syllable to a �le identi�er. When pathname is legal,

the function pathname �d is the �le identi�er that pathname identi�es.

The set directory �ds is the set of �ds in the �le space that identify directory �les. (Speci�cally, it is

the set of �d that the function ftype maps to directory.) This will be convenient, so that we can quantify

over the directories in a �le space.

LegalPathnames

FileSpace

legal pathnames : (FID�PATHNAME)

pathname �d : FID�PATHNAME FID

directory �ds : FID

directory �ds = ftype�fdirectoryg

dompathname �d � directory �ds�PATHNAME

8�d : FID j ftype(�d) = directory �
pathname �d(�d; hi) = �d

8�d : FID; pn : PATHNAME; name : SYLLABLE j
((�d;pn) 2 dompathname �d

^ ftype(pathname �d(�d;pn)) = directory

^ name 2 dom(DirContents(pathname �d(�d;pn)))) �
pathname �d(�d;pn hnamei) = DirContents(pathname �d(�d;pn))(name)

legal pathnames = dompathname �d

Remark

on the

Z

The expression ftype�fdirectoryg denotes the inverse image of the singleton set contain-

ing the FTYPE value directory. That is, it represents the set f �d : FID j ftype(�d) 2
fdirectoryg g

The schema FileSpace includes the property that

8�d : dom fcontents �
ftype(�d) = directory)

ran(DirContents(�d)) � dom fcontents

From this we can deduce that

ranpathname �d � dom fcontents;

because the only �ds de�ned to be in the range of pathname �d are those that are in the range of a parsed

directory.

LegalPathname

LegalPathnames

start�d? : FID

pn? : PATHNAME

(start�d?;pn?) 2 legal pathnames

CLI Technical Report 120 10

Remark

on the

Z

The schema LegalPathname is designed as a predicate schema.

PathnameLookup

LegalPathname

�d! : FID

�d! = pathname �d(start�d?;pn?)

Remark

on the

Z

The schema PathnameLookup is designed as a data translation schema, for use with pipes ().

It inherits inputs start�d? and pn? from LegalPathname.

We de�ne ExistentFile and NonExistentFile as predicate schemas to distinguish whether a

(start�d?;pn?) pair identi�es a �le in the FileSpace state.

ExistentFile

FileSpace

LegalPathnames

start�d? : FID

pn? : PATHNAME

(start�d?;pn?) 2 dompathname �d

NonExistentFile

FileSpace

LegalPathnames

start�d? : FID

pn? : PATHNAME

(start�d?;pn?) =2 dompathname �d

We de�ne the schemasRegularFile andDirectoryFile to be predicates indicating that the �le identi�ed

by a pathname is a regular �le or a directory �le, respectively. These predicates will be used later when

we must restrict operations that apply only to one kind of �le.

RegularFile

FileSpace

LegalPathnames

start�d? : FID

pn? : PATHNAME

ftype(pathname �d(start�d?;pn?)) = regular

CLI Technical Report 120 11

DirectoryFile

FileSpace

LegalPathnames

start�d? : FID

pn? : PATHNAME

ftype(pathname �d(start�d?;pn?)) = directory

EmptyDirectory

DirectoryFile

dom(DirContents(pathname �d(start�d?;pn?))) = ;

We specify the successful actions of linking, unlinking and creating a �le. Pathnames instead of �le

identi�ers are used to name �les. We do not specify read, write or destroy at this level, since pathnames are

never used in the interfaces to these operations.

The schema Root�d is preserved is used in the schemas that are �FileSpace but do not change

Root�d. At the moment, we do not include any operations that change Root�d. However, the Unix

system de�nes the chroot operation, which does change the (apparent) root of the �le space. So, we provide

for that possibility.

Root�d is preserved

�FileSpace

Root�d0 = Root�d

Link

The purpose of a link operation is to associate a new pathname with an existing �le.

LinkFS allows us to a create a legal pathname to a �le regardless of whether the �le is already present in

any directory (e.g., a �le created by CreateBFS). The pn is the name of the new link to be installed, and

�d is its target. front(pn) must name an existing directory, and last(pn) must be a name not currently in

that directory. �d must identify an existing �le.

CLI Technical Report 120 12

LinkFS

�FileSpace

LegalPathnames

NonExistentFile

Root�d is preserved

start�d? : FID

pn? : PATHNAME

�d? : FID

�d? 2 dom fcontents

#pn? > 0

(start�d?; front(pn?)) 2 legal pathnames

(parent�d == pathname �d(start�d?; front(pn?)) �
ftype(parent�d) = directory ^
last(pn?) =2 dom(DirContents(parent�d)) ^
(dir == DirContents(parent�d) �

(newdir == dir [flast(pn?) 7! �d?g �
fcontents0 = fcontents� fparent�d 7! UnParseDir(newdir)g)))

ftype0 = ftype

Remark

on the

Z

We can describe the new directory contents using [, rather than �, because we know that

last(pn?) is not in the domain of the directory.

Unlink

The purpose of an unlink operation is to remove a pathname from the �le space. Removing a pathname does

not remove it's associated �le. Thus we do not remove the corresponding element from either fcontents or

ftype. (At this level �les may be left with no links to them. After we introduce the \�le table" and \process

table", we will add \garbage collection" to the �le system.)

The input is the (start�d;pn) pair which names an existing �le. In a legal pathname, all ini-

tial subsequences are also legal pathnames, and name directories. So we know, in particular, that

(start�d?; front(pn)) identi�es a directory in the schema below.

CLI Technical Report 120 13

UnlinkFS

�FileSpace

LegalPathname

ExistentFile

Root�d is preserved

start�d? : FID

pn? : PATHNAME

#pn? > 0

(parent�d == pathname �d(start�d?; front(pn?)) �
(dir == DirContents(parent�d) �

(newdir == flast(pn?)g dir �
fcontents0 = fcontents� fparent�d 7! UnParseDir(newdir)g)))

ftype0 = ftype

AddFType

The schema AddFType is a companion operation to CreateBFS. The two operations combine to update

fcontents and ftype when creating a new �le.

AddFType

ftype; ftype0 : FID FTYPE

�d? : FID

ftype? : FTYPE

�d? =2 dom ftype

ftype0 = ftype� f�d? 7! ftype?g

Remark

on the

Z

Note that FileSpace includes the property that dom ftype = dom fcontents, which is not a nec-

essary property of AddFType. In fact, AddFType is applied precisely when ftype does not yet re-

ect the �le type of the new FID �d?. So, we must combine AddFType with CreateBFS so that

this invariant holds in both the initial and �nal states, and then explicitly include �FileSpace

to state that the invariant holds.

Note also that AddFType does not state any relation about the initial and �nal Root�d or

fcontents. AddFType will be used in schemas that include statements of those relations.

Thus, AddFType is designed as a partial description of a FileSpace transition, and is intended

to be combined with other �FileSpace schemas to more completely describe operations on a

FileSpace.

DeleteFType

The operation DeleteFType removes the association of a �le identi�er with an FTYPE from the function

ftype.

CLI Technical Report 120 14

DeleteFType

ftype; ftype0 : FID FTYPE

�d? : FID

�d? 2 dom ftype

ftype0 = f�d?g ftype

CreateFS

In a �le space, creating a �le is a combination of a basic �le creation step and a link operation. The pn is

the name of the new �le to be created. The pathname front(pn) must name an existing directory, and the

syllable last(pn) must be a name not currently in that directory. The input ftype? gives the type of the

newly created �le.

In the schema CreateFS these inputs are inherited from the schemas LinkFS and AddFType. (The

input �d? to LinkFS is captured by NewFid, and so is not an input of CreateFS.) The �le space is

changed by the addition of an empty �le to the �le space as speci�ed by CreateBFS, the updating of ftype

to re
ect the new �le's type, and the creation of a link to the new �le as speci�ed by LinkFS.

CreateFS b= NewFid((CreateBFS ^ AddFType ^ Root�d is preserved) LinkFS)

Remark

on the

Z

Note that CreateBFS and AddFType can be combined using ^ because they do not overlap in

either their outputs or the state that they \change".

LinkFS must be added via , because it requires that �d? 2 dom fcontents, and that is only true

for the fcontents0 following CreateBFS.

5 The File Table

A �le must be opened before access can occur. Open �les are named by elements of the type OID.

[OID]

A �le may be opened in one of several \modes", given permission to do so.

ACCESS MODE ::= rdonly j wronly j rdwr j append

The following schema is so named because it models information implemented in the Unix global �le

table. ftposn is the current position for the open �le. ftmode associates an access mode with the open �le.

ft�d maps an oid to a �le identi�er.

CLI Technical Report 120 15

FileTable

ftposn : OID

ftmode : OID ACCESS MODE

ft�d : OID FID

dom ftposn = dom ftmode = dom ft�d

Remark

on the

Z

We postpone saying ran(ft�d) � dom(fcontents) until later, because the FileSpace schema is

not part of the FileTable schema. This will be introduced in the BasicAccessSystem (section 8,

page 22).

De�ne some data translation schemas for OID0s.

OidToFid

FileTable

oid? : OID

�d! : FID

oid? 2 dom ft�d

�d! = ft�d(oid?)

OidToPosn

FileTable

oid? : OID

o�set! :

oid? 2 dom ftposn

o�set! = ftposn(oid?)

Open

The schema OpenFT speci�es a successful �le open operation. The �le to be opened is speci�ed by �d?.

Oid! is a new open �le identi�er. The input access mode? speci�es the access mode to the open �le. The

initial position of the opened �le is zero.

Directories are updated via the LinkFS and UnlinkFS operations. The restriction that directory �les

only be opened in rdonly mode is not imposed until later (see section 8, The Basic Access System), because

FileTable does not include the schema FileSpace, and so does not include ftype.

When a �le is opened for writing (but not for appending), the �le is truncated to zero length. This

corresponds to requiring the O TRUNC option of the Unix open call. It would be easy to extend the speci�cation

CLI Technical Report 120 16

to include opening for write without the O TRUNC option, as well as some additional open options (e.g., create,

exclusive create).

However, some options, such as O SYNC, are not so simple to include. The O SYNC option requires that

there be no output bu�ering on write operations (i.e., that the write call not complete until the required

physical I/O has completed.) However, the �le system speci�cation does not describe bu�ered I/O; it

describes the required changes in the state of the �le space. Bu�ered I/O is an optimization strategy in

the implementation. Optimizations should not alter the semantics of an operation, only its performance.

A commonly accepted requirement for an optimization is that it not change the semantics of a successful

operation, but that it may change the semantics of operations that fail (e.g., a di�erent error may be reported

than in the unoptimized implementation). However, we observe that the Unix �le system admits bu�ered

I/O in its fundamental �le I/O model, and so includes options for dealing with the e�ects of bu�ering on

�le operations. We have not included bu�ered I/O in our speci�cation of SFS.

If a �le is open for reading at the time that it is opened for writing, then this truncation can be observed.

There are other choices for the meaning of opening a �le for writing when it is already open for reading. Other

choices may make the �le system speci�cation more complex. We have chosen one that seems particularly

simple, although it does not model all of the rich, complex behavior of the Unix �le system.

Remark

on the

Z

OpenFT illustrates a pattern for de�ning a schema that operates on a portion of its state.

OpenFT operates on the FileTable, but also needs to refer to the state of the BasicFileSpace.

We include the declaration �FileTable to indicate the former. But we include BasicFileSpace

for the latter, rather than �BasicFileSpace. We do this because we may combine OpenFT

with other schemas that perform corresponding operations on the BasicFileSpace using the pipe

operator (). If we included �BasicFileSpace here, then OpenFT would include the property

that fcontents0 = fcontents. Including that property would prevent us from piping between

OpenFT and a schema that operates on BasicFileSpace.

OpenInternalFT

�FileTable

BasicFileSpace

�d? : FID

access mode? : ACCESS MODE

oid! : OID

�d? 2 dom fcontents

oid! =2 dom ft�d

ft�d0 = ft�d� foid! 7! �d?g

ftmode0 = ftmode� foid! 7! access mode?g

ftposn0 = ftposn� foid! 7! 0g

TruncateFile

�BasicFileSpace

�d? : FID

fcontents0 = fcontents� f�d? 7! hig

CLI Technical Report 120 17

TruncatingOpen

access mode? : ACCESS MODE

access mode? 2 fwronly; rdwrg

MaybeTruncateFile b= TruncatingOpen) TruncateFile

OpenFT b= OpenInternalFT ^MaybeTruncateFile

CloseFT

We specify the operation of destroying a �le table entry. This is the opposite of OpenFT. Note, that this

e�ect does not always occur when closing a �le at the Unix File System level; a �le table entry is expunged

only when no process references it. Since a �le table entry may be shared by two process �le tables, or (in

Unix, but not in this draft speci�cation) by multiple entries in a single process table.

CloseFT

�FileTable

oid? : OID

oid? 2 dom ft�d

ft�d0 = foid?g ft�d

ftmode0 = foid?g ftmode

ftposn0 = foid?g ftposn

The property oid 2 dom ft�d is not necessary in this schema. However, it does indicate our intention

about the use of this operation. The CloseFT operation could be extended to operate on oid's that do not

have entries the �le table, in which case the �le table should remain unchanged7.

Seek

The schema SeekFT speci�es the operation of logically updating an open �le's position. No data is read

or written. SeekFT merely updates the ftposn entry in the �le table. Thus, you can seek to a position

outside of the current �le without error.

7The expression foid?g ft�d yields ft�d if oid? =2 dom ft�d. So we need only remove the restriction oid? 2 dom ft�d from

the current schema to e�ect this change.

CLI Technical Report 120 18

SeekFT

�FileTable

oid? : OID

o�set? :

oid? 2 dom ft�d

ftposn0 = ftposn� foid? 7! o�set?g

ftmode0 = ftmode

ft�d0 = ft�d

The schema IncrPosnFT increments the open �le position by a speci�ed amount (delta?). This will

be used later to describe updating the �le position after a read or write operation.

IncrPosnFT

�FileTable

oid? : OID

delta? :

oid? 2 dom ft�d

ftposn0 = ftposn� foid? 7! ftposn(oid?) + delta?g

ftmode0 = ftmode

ft�d0 = ft�d

SeekEOF b= OidToFidFileLengthSeekFT

We now de�ne three more schemas to be used as predicates. They allow us to distinguish classes of access

modes recorded in the FileTable.

Opened For Read

OpenedForRead

FileTable

oid? : OID

ftmode(oid?) 2 frdonly; rdwrg

Opened For Write

OpenedForWrite

FileTable

oid? : OID

ftmode(oid?) 2 fwronly; rdwrg

CLI Technical Report 120 19

Opened For Append

OpenedForAppend

FileTable

oid? : OID

ftmode(oid?) = append

6 Processes

The system is populated with processes, each identi�ed by an element of the set PID. Each process has

an associated �le descriptor table, a mapping from �le descriptors (type FD) to open �le identi�ers. Each

process has its own space of �le descriptors, through which it can reference �le table entries.

[PID;FD]

ProcessTable

pfdtable : PID (FD OID)

FdToOid

The schema FdToOid translates a pair of inputs (pid? and fd?), which identify an entry in a pfdtable,

into the OID that entry points to.

FdToOid

ProcessTable

pid? : PID

fd? : FD

oid! : OID

pid? 2 dompfdtable

fd? 2 dom(pfdtable(pid?))

oid! = (pfdtable(pid?))(fd?)

FdToFid b= FdToOidOidToFid

There are four operations on the ProcessTable:

CLI Technical Report 120 20

� add a new �le-descriptor entry,

� delete an existing �le-descriptor entry,

� fork a new process, which inherits its initial pfdtable from its parent, and

� duplicate a pfdtable entry within that pfdtable.

AddProcessFD

AddProcessFD

�ProcessTable

pid? : PID

oid? : OID

fd! : FD

pid? 2 dompfdtable

fd! =2 dom(pfdtable(pid?))

(newfdtable == (pfdtable(pid?)) � ffd! 7! oid?g �
pfdtable0 = pfdtable� fpid? 7! newfdtableg)

DeleteProcessFD

DeleteProcessFD

�ProcessTable

pid? : PID

fd? : FD

pid? 2 dompfdtable

fd? 2 dom(pfdtable(pid?))

(newfdtable == ffd?g (pfdtable(pid?)) �
pfdtable0 = pfdtable� fpid? 7! newfdtableg)

ForkProcess

We partially specify the Unix fork operation. A fork creates a new process, which inherits the �le descriptor

table of its parent process. The input pid? identi�es the parent process. The output pid! identi�es the child

process.

CLI Technical Report 120 21

ForkPT

�ProcessTable

pid? : PID

pid! : PID

pid? 2 dompfdtable

pid! =2 dompfdtable

pfdtable0 = pfdtable� fpid! 7! pfdtable(pid?)g

DuplicateFD

DuplicateFD

�ProcessTable

pid? : PID

fd? : FD

fd! : FD

pid? 2 dompfdtable

fd? 2 dom(pfdtable(pid?))

fd! =2 dom(pfdtable(pid?))

(oid == (pfdtable(pid?))(fd?) �
newfdtable == (pfdtable(pid?)) � ffd! 7! oidg �

pfdtable0 = pfdtable� fpid? 7! newfdtableg)

7 Garbage Collection

In a system state, a �le may be referenced in several ways: it may have one or more links from directories,

and it may be open to one or more processes. A �le's contents are removed from the system only when all

references to it disappear.8 Here we specify garbage collection by directly describing the presence or absence

of ProcessTable and directory references.

ExistsLinkReferenceToFid

FileSpace

LegalPathnames

�d? : FID

9pn : PATHNAME �
((Root�d;pn) 2 legal pathnames ^

pathname �d(Root�d;pn) = �d?)

8In the standard Unix implementation, each inode contains a count of all the links referencing it, and each �le table entry

contains a count of the �le descriptors in the process �le-tables that reference it. When the reference count of an inode is zero,

there are no remaining link references in the directories of the �le system. When the reference count of a �le-table entry is zero,

there are no remaining �le descriptor entries in any process' �le-table referring to that �le-table entry. The Unix �le system

\deletes" a �le (as opposed to merely removing a directory link to a �le) when both of these counts are zero.

CLI Technical Report 120 22

ExistsFileTableReferenceToFid

FileTable

�d? : FID

9oid : OID j oid 2 dom ft�d � ft�d(oid) = �d?

ExistsReferenceToFid b= ExistsLinkReferenceToFid _ ExistsFileTableReferenceToFid

A �le may be destroyed when there are no references to it. FileSpaceGC speci�es that a �le is garbage

collected if there are no references to it, otherwise there is no state change. This is a �FileSpace transition,

but it also depends on FileTable; so we declare it as �FileTable to indicate that it does not a�ect the

FileTable state (and also to state that the FileTable variables are preserved as outputs of FileSpaceGC).

FileSpaceGC b= (: ExistsReferenceToFid, (DestroyBFS ^ DeleteFType
^ Root�d is preserved ^ �FileSpace))

^ (ExistsReferenceToFid, �FileSpace)

^ �FileTable

FileTableGC speci�es that a �le table entry is garbage collected if there are no references to it, otherwise

there is no state change. This transition does not depend on the FileSpace state, so we need not include

�FileSpace here.

ExistsReferenceToFileTableEntry

ProcessTable

oid? : OID

9pid : dompfdtable � 9 fd : dom(pfdtable(pid)) �
(pfdtable(pid))(fd) = oid?

FileTableGC b= (: ExistsReferenceToFileTableEntry, CloseFT)

^ (ExistsReferenceToFileTableEntry, �FileTable)

8 The Basic Access System

The state of the Basic Access System includes the �le space, the �le table and the process table. A

BasicAccessSystem has several additional properties compared to a FileSpace.

� File table entries must point to �les in the FileSpace.

� Process �le descriptor table entries must point to �le table entries. (That is, every process fd must

map to a �le table entry.)

CLI Technical Report 120 23

� Every �le table entry is pointed to by some process �le descriptor table entry. (That is, every �le table

entry is the image of some process' �le descriptor.)

� Every �le in the FileSpace must either be reachable from the root or be currently open.

The second and third properties together state that all oid's accessible from the pfdtable occur in the

�le table, and all oid's in the �le table also occur somewhere in the pfdtable. This can be stated succinctly

in Z:

dom ft�d =
S
f pid : dompfdtable � ran(pfdtable(pid)) g

This says that the domain of ft�d (i.e., all open �le oid0s) is the same as the union of the ranges of all

process �le tables (i.e., all of the oid0s reachable from some fd in the process table for some pid).

These two properties require garbage collection of inaccessible entries in the FileTable. The fourth

property additionally requires garbage collection of the FileSpace. To state it we introduce the function

rooted pathname �d, which is simply pathname �d with the restriction that the starting FID be the

Root�d of the FileSpace.

RootedPathnames

LegalPathnames

rooted pathname �d : PATHNAME FID

8pn : PATHNAME �
rooted pathname �d(pn) = pathname �d(Root�d;pn)

BasicAccessSystem

FileSpace

LegalPathnames

RootedPathnames

FileTable

ProcessTable

ran ft�d � dom fcontents

dom ft�d =
S
f pid : dompfdtable � ran(pfdtable(pid)) g

8�d : dom fcontents �
�d 2 ran rooted pathname �d _
�d 2 ran ft�d

Open

Open updates the �le table and process table in the basic access system, but not the �le space. The �le

table update is described in the schema OpenFT. The process table is updated to map a new �le descriptor

to a new �le table entry. The �le must already exist. The Create operation is used to create a new �le.

Directories are updated only by the LinkBAS and UnlinkBAS operations. Directory �les can-

not be changed via the write operation. This restriction is imposed by including the schema

OnlyOpenDirectoriesRDONLY in OpenBAS.

CLI Technical Report 120 24

OnlyOpenDirectoriesRDONLY

FileSpace

�d? : FID

access mode? : ACCESS MODE

�d? 2 dom ftype

ftype(�d?) = directory) access mode? = rdonly

OpenBAS b= PathnameLookup

(OnlyOpenDirectoriesRDONLY ^ OpenFT)
AddProcessFD

Remark

on the

Z

If our model were to stop at the BAS level, we would include �FileSpace in the de�nition of

OpenBAS, since an open operation does not change the FileSpace. However, we are building

toward a model of UFS and SFS. So we will leave out the �FileSpace, so that later at the

UFS level we can pipe from CreateBAS, which does change the FileSpace, to OpenBAS.

Similarly, we will not include �FileTable in the de�nition of CreateBAS.

Close

CloseBAS b= (FdToOid ^ FdToFid)
(DeleteProcessFD

FileTableGC

(FileSpaceGC ^ �FileTable))

Remark

on the

Z

Without the �FileTable, gives the signature of CloseBAS as excluding the FileTable0 state

variables ft�d0 and friends. The maps incoming ft�d0 to ft�d. Even though FileTableGC is

declared �FileTable, apparently the

:::FileSpaceGC eats up the FileTable0 and, since FileSpaceGC isn't �FileTable, it doesn't

produce a new set of \�nal state" variables.

Link

The LinkBAS schema takes the same logical inputs as LinkFS, but the names are di�erent. The existing

�le (the target of the link) is identi�ed by the input pair (xstart�d?;xpn?), rather than an �d. The input

pair (start�d?;newpn?), inherited from LinkBAS, still identi�es the new pathname. LinkBAS

LinkBAS b= (PathnameLookup[xstart�d?=start�d?;xpn?=pn?]

LinkFS)

^ �FileTable ^ �ProcessTable

CLI Technical Report 120 25

Unlink

The �le to be unlinked is identi�ed by (start�d?;pn?). That �le must exist and be either a regular �le or

an empty directory.

The prohibition against unlinking non-empty directories simpli�es the problem of garbage collecting the

�le space, because only the �le being unlinked is a candidate for garbage collection. If unlinking non-empty

directories were permitted, then the entire tree of �les under the newly unlinked directory would have to be

considered.

UnlinkBAS b= PathnameLookup

((RegularFile _ EmptyDirectory) ^ UnlinkFS FileSpaceGC)

Create

The BasicAccessSystem added FileTable and ProcessTable to the FileSpace. Since creating a �le

a�ects neither the FileTable nor the ProcessTable, CreateBAS need add nothing to CreateFS. It

takes the same inputs (start�d?;pn?) and ftype? and has signature �FileSpace.

CreateBAS b= CreateFS

Read

The �le to be read is speci�ed by a �le descriptor (FD). The �le must already be opened in one of the access

modes that allows a read operation. The open �le's position is incremented by the amount of data read.

DataLength

data? : FILE

data! : FILE

delta! :

delta! = #data?

data! = data?

ReadBAS b= FdToOid

(OidToFid ^ OpenedForRead ^ OidToPosn)
ReadBFSDataLength(FdToOidIncrPosnFT)

Write

The �le to be written is speci�ed by a �le descriptor (FD). The �le must already be opened in one of

the access modes that allows a write operation. The o�set where writing begins is given by the �le table

CLI Technical Report 120 26

position, and therefore this input parameter is hidden in the ultimate speci�cation forWriteBAS. The �le

table state is updated to re
ect the number of bytes written.

Note that the behavior of writing to a �le when it is opened for write di�ers from when it is opened for

append . When opened for write, the data is written at the current �le position (as represented in ftposn in

FileTable). When opened for append, the �le position is always set to the end of the �le before the data is

written. In both cases the �le position is incremented by the length of the data written.

The write operation is described just below in theWriteBAS schema; the append operation is described

separately in the AppendBAS schema.

WriteBAS b= FdToOid

(OidToFid ^ (OpenedForWrite _ OpenedForAppend) ^ OidToPosn)
WriteBFS

DataLength n (data!)
(FdToOidIncrPosnFT)

Remark

on the

Z

Observe that in WriteBAS the schema DataLength gets its input data? from the outer-most

inputs. WriteBFS doesn't capture it, because it's not an output being fed down the pipe. But

in ReadBAS, DataLength does capture the data! output from ReadBFS, and so it must

propagate it to the next stage of the pipe. Since we don't want data! as an output of WriteBAS,

we hide it as an output of DataLength.

Append

The append operation is similar to the write operation, but always positions the �le at EOF before the data

is written.

AppendBAS b= (FdToOidSeekEOF) WriteBAS

Remark

on the

Z

Note that the FdToOid eats the fd? input and produces the oid? input required by SeekEOF.

But the semicolon operator () sees the original fd? from the input arguments to the top-level

schema-expression, which is required as input to WriteBAS.

Fork

Fork describes the e�ect on the �le system of a forking a new process. The new process has its own process

�le table, which is initially a copy of the �le table of its parent process. This operation creates a new pid

and adds the appropriate entry to the process table. The work is done by ForkPT.

ForkBAS

�BasicAccessSystem

�FileTable

�FileSpace

ForkPT

CLI Technical Report 120 27

Remark

on the

Z

ForkBAS is �FileTable because we don't include reference counts in the �le table model. If you

wanted to add reference counts, that could be done by de�ning a new schema (FileTableRefCnt)

with the function ftrefcnt : OID . Then ForkBAS would be �FileTableRefCnt, but still

�FileTable.

9 Discretionary Access Control

Our basic model of access control revolves around a set of permissions. The access control policy provides

the current set of permissions given an operation and the policy-relevant attributes of the operands. Each

operation has a set of permissions de�ned as necessary for it to complete. The de�nition of the operation,

in turn, must test whether this set of necessary permissions is included in the set of current permissions

provided by the access control policy. The de�ned set of permissions is the language with which the policy

and the enforcement mechanism communicate.

At the DAC level we recognize three types of access permission to a �le: r, w, and x. Processes and

�les have the attributes that are used to determine discretionary access. For this DAC model a �le has an

owner and a group; a process has an owner and a set of groups . The types USER and GROUP are used

to model the ownership and group-membership of a �le or a process.9

We do not currently model execution. So the x permission is only used as \search" permission for a

directory, which permits a search for a speci�c name in the directory. x permission does not permit listing

all of the names in the directory or reading the directory.

We do not model the \setuid", \setgid", or the \sticky" permissions of the full Unix �le system.

PERM ::= r j w j x

PERMS == (PERM)

[USER;GROUP]

For convenience we de�ne some \record structures" to contain related variables. The record schema

FPERMS contains the three permission �elds named owner perms;group perms; and other perms.

FPERMS

owner perms;group perms;other perms : PERMS

DAC File Attributes

owner : USER

group : GROUP

fperms : FPERMS

9Our model is BSD-like, in this respect, associating a process with a set of groups, rather than a single group as for System

V-like systems. We do not model the Unix notions of \real gid" and \e�ective gid".

CLI Technical Report 120 28

DAC Process Attributes

owner : USER

groups : GROUP

The type DACops names the operations that to which the discretionary access will apply. Note that

we have introduced the search operation here. Now that directories have permissions associated with them,

a process may be prohibited from searching for a name in a directory. Directory permissions may permit

searching for a name in a directory but not reading the directory. That is, a process may be allowed to

search for a speci�c name in a directory, but not read the directory to learn all of the names in it. The x

�le permission is interpreted as the search permission for a directory.

DACops ::= open j link j unlink j create j search

DAC

fdac : FID DAC File Attributes

pdac : PID DAC Process Attributes

DAC current perms : PID�FID PERMS

DAC necessary perms : DACops�ACCESS MODE PERMS

8pid : PID; �d : FID �
DAC current perms(pid;�d) =

(pdac pid):owner = (fdac �d):owner

(fdac �d):fperms:owner perms

(fdac �d):group 2 (pdac pid):groups

(fdac �d):fperms:group perms

(fdac �d):fperms:other perms

DAC necessary perms(open; rdonly) = frg

DAC necessary perms(open; rdwr) = fr;wg

DAC necessary perms(open;wronly) = fwg

DAC necessary perms(open; append) = fwg

8access mode : ACCESS MODE �
DAC necessary perms(create; access mode) = fx;wg ^
DAC necessary perms(link; access mode) = fx;wg ^
DAC necessary perms(unlink; access mode) = fx;wg ^
DAC necessary perms(create; access mode) = fx;wg ^
DAC necessary perms(search; access mode) = fxg

Remark

on the

Z

The schema DAC declares the functions fdac and pdac that map an �d or a pid to some

attributes. The schema DAC File Attributes (in e�ect) de�nes a record structure to repre-

sent these attributes (fowner, and fgroup). DAC Process Attributes de�nes an analogous

structure for processes.

CLI Technical Report 120 29

The operation DestroyFileAttrDAC is never invoked directly. It is only invoked implicitly by

UnlinkOK UFS.

DestroyFileAttrDAC

�DAC

BasicAccessSystem

LegalPathname

pid? : PID

start�d? : FID

pn? : PATHNAME

�d == pathname �d(start�d?;pn?) �
fdac0 = f�dg fdac

pdac0 = pdac

The schema DACVisiblePathnames de�nes what pathnames a process can utilize in DAC �le system

operations. If a pathname is not \visible" then the user program cannot use that name. Note that visibility

is a property of a pathname, not of a �le. If a �le has several links to it, each link has a di�erent pathname.

Some of these pathnames may be visible to a given process and some may not be. Note that if a pathname

is in DACvisible pathnames(pid;�d), then it must also be a legal pathname.

Visible pathnames are described as a function from PID � FID. The FID represents the starting

directory for resolving the pathname. At the user level this will be either the root �d or the �d of the

process' current working directory. If the process does not have search access to a directory, then no

pathname starting from that directory will be visible. Thus, a process will not be able to refer to absolute

if it does not have search access to the root directory, and will not be able to refer to relative pathnames if

it does not have search access to its current working directory.

DACVisiblePathnames

FileSpace

LegalPathnames

DAC

DACvisible pathnames : PID�FID! (PATHNAME)

8pid : PID; �d : FID; pn : PATHNAME �
hi 2 DACvisible pathnames(pid;�d)

, DAC necessary perms(search; rdonly) � DAC current perms(pid;�d)

^
(#pn > 0

^ pn 2 DACvisible pathnames(pid;�d))

, front(pn) 2 DACvisible pathnames(pid;�d)

^ (�d;pn) 2 legal pathnames
^ DAC necessary perms(search; rdonly)

� DAC current perms(pid;pathname �d(�d; (front(pn))))

CLI Technical Report 120 30

DACVisiblePathname

DACVisiblePathnames

pid? : PID

start�d? : FID

pn? : PATHNAME

pn? 2 DACvisible pathnames(pid?; start�d?)

The DAC test for each operation is basically

DAC necessary perms(Operation;Access Mode) � DAC current perms(Pid;Fid)

Operations will also require that their pathname inputs be appropriately visible. (E.g., for the link operation,

the front of the pathname to be created must exist, but the full pathname must not exist.)

Remark

on the

Z

Since we de�ned DAC necessary perms to take both a DACop and an access mode as

arguments, we must associate an access mode with each operation when checking DAC per-

missions. Since Link and Unlink do not normally have any associated access modes, we adopt

the arbitrary convention of associating them with rdwr mode.

10 The Unix File System Interface

The UFS level combines the BasicAccessSystem with the DAC. In addition, it restricts some operations

according to �le type. A number of these restrictions appear to be a mechanism to enforce a protocol on �le

manipulation on processes so that desirable UFS invariants can be enforced. For example, there can only be

a single link to a directory �le. (This means that the �le space underlying the UFS is restricted to being a

rooted tree, instead of an arbitrary graph.)

At the UFS level, link and unlink are only permitted on regular �les, not on directories. Only one link

to a directory is permitted, the one created when the directory is created. That link to a directory is removed

by the rmdir operation, which is just like UnlinkFS, but requires additionally that the directory be empty.

Also, rather than a single create operation for both �les and directories, create is restricted to creating

regular �les and the new operation mkdir is used to create directory �les. The write operation is also

not permitted on directories; directories are only updated by link, unlink, create, mkdir, and rmdir.

The \current process" is represented by the current process identi�er, cpid. Each process has a \working

directory". This will used as the starting FID when resolving \relative pathnames." The mapping from each

pid to its working directory is represented in the state variable pcwd. Note that there is no constraint that

ranpcwd � dom fcontents! There is no mechanism to prevent a process' from deleting (i.e., unlinking) a

directory that is in use as a working directory. Unix permits this, and so we do, as well.10 Further, user

process need not have read/search access to either the root directory or to its current working directory. Of

course, in that case the process will not be able to reference absolute or relative pathnames (respectively).

10If chmod were included in our model, we would require that the new working directory exist { and be a directory { in

order for the chmod operation to be successful.

CLI Technical Report 120 31

UFS

BasicAccessSystem

DAC

LegalPathnames

pcwd : PID FID

cpid : PID

dom fdac = dom fcontents

dompdac = dompfdtable

dompcwd = dompfdtable

ranpcwd � directory �ds

cpid 2 dompfdtable

The transitions on the controlled access system are those of the basic access system, with additional

access control constraints. At this level, pathnames are labeled either relative or absolute.

PATHNAMETYPE ::= relative j absolute

LABELED PATHNAME == PATHNAMETYPE�PATHNAME

The functions lpntype and lpnpathname extract the type and pathname of a labeled pathname,

respectively.

lpntype : LABELED PATHNAME! PATHNAMETYPE

lpnpathname : LABELED PATHNAME! PATHNAME

8 lpn : LABELED PATHNAME; pnt : PATHNAMETYPE �
lpntype(lpn) = pnt, (9pn : PATHNAME � (pnt;pn) = lpn)

8 lpn : LABELED PATHNAME; pn : PATHNAME �
lpnpathname(lpn) = pn, (9pnt : PATHNAMETYPE � (pnt;pn) = lpn)

AbsolutePathname

Operations at the UFS level accept input of type LABELED PATHNAME. The AbsolutePathname

schema translates from a LABELED PATHNAME input to the (start�d?;pn?) pair used by the

BasicAccessSystem operations. AbsolutePathname is designed for piping.

CLI Technical Report 120 32

AbsolutePathname

UFS

lpn? : LABELED PATHNAME

pid! : PID

start�d! : FID

pn! : PATHNAME

pid! = cpid

start�d! = lpntype(lpn?) = relative

pcwd(cpid)

Root�d

pn! = lpnpathname(lpn?)

Create

The CreateOK UFS operation represents a successful call Create to the Unix kernel. We will describe

error returns and error codes later.

For a Create operation, the process must have r and x access to the directory in which the �le is to

be created. CreateUFS takes as input the pathname for the new �le (lpn?). AbsolutePathname is

used to translate the labeled pathname lpn? to start�d? and pn?, which are the inputs expected by the

BasicAccessSystem operations. At the UFS level Create combines CreateBAS and OpenBAS, so that

it both creates a new �le and produces a new FD for that �le an output.

The permission checking schema, CreatePermittedDAC, checks that current process has the proper

permissions for the directory in which the new �le is to be created.

CreatePermittedDAC

DAC

BasicAccessSystem

DACVisiblePathname

start�d? : FID

pn? : PATHNAME

front(pn?) 2 DACvisible pathnames(pid?; start�d?)

(�d == pathname �d(start�d?; front(pn?)) �
DAC necessary perms(create; rdwr) � DAC current perms(pid?;�d))

Note that it is possible to create a �le with permissions that say you can't write to it. And since create

opens the �le, too, you get the fd back so you can write to it while it's open!

The CreateFileAttrsDAC operation creates the initial DAC File Attributes for a newly created

�le. The �le's owner is taken from the power of the process creating the �le. The �le's group is taken from

the group of its parent directory in the BSD style. (This means that we cannot create the root directory

this way!) The �le's permissions are passed in via the fperms? input.

CLI Technical Report 120 33

CreateFileAttrsDAC

�DAC

BasicAccessSystem

LegalPathnames

pid? : PID

start�d? : FID

pn? : PATHNAME

fperms? : FPERMS

pathname �d(start�d?;pn?) =2 dom fdac

#pn? > 0

(�d == pathname �d(start�d?;pn?) �
(parent �d == pathname �d(start�d?; front(pn?)) �

(fdac0(�d)):fperms = fperms?

^ (fdac0(�d)):owner = (pdac(pid?)):owner

^ (fdac0(�d)):group = (fdac(parent �d)):group))

fdac = fpathname �d(start�d?;pn?)g fdac0

pdac0 = pdac

CreateOK UFS b= AbsolutePathname

(CreatePermittedDAC ^ CreateBAS ^ OpenBAS
^ CreateFileAttrsDAC)

^ �DAC

Open

The OpenOK UFS operation represents a successful call to open in the Unix kernel. We will describe

error returns and error codes later.

We have not tried to model all options of the Unix open system call. However, we believe that the

schemas de�ned so far are suÆcient to do so.

Under Unix, Open may either open an existing �le (as in lower levels) or create a �le. We model this

by having Open call Create if the named �le does not exist.

OpenPermittedDAC

DAC

BasicAccessSystem

DACVisiblePathname

start�d? : FID

pn? : PATHNAME

access mode? : ACCESS MODE

(�d == pathname �d(start�d?;pn?) �
DAC necessary perms(open; access mode?) � DAC current perms(pid?;�d))

CLI Technical Report 120 34

OpenExistingFileOK UFS b= AbsolutePathname(OpenPermittedDAC ^ OpenBAS)
^ �DAC

Link and Unlink

The operations LinkOK UFS describes the outcome of a successful link operation on a UFS state. It takes

two arguments of type LABELED PATHNAME, lpn? and xlpn?. The input lpn? is the name of the

new line to be created, and must not name an existing �le. The input xlpn? must name an existing, regular

�le. Both xlpn? and front(lpn?) must be pathnames visible to the current process.

LinkPermittedDAC

DAC

BasicAccessSystem

DACVisiblePathnames

pid? : PID

start�d?;xstart�d? : FID

pn?;xpn? : PATHNAME

front(pn?) 2 DACvisible pathnames(pid?; start�d?)

xpn? 2 DACvisible pathnames(pid?;xstart�d?)

(�d == pathname �d(start�d?; front(pn?)) �
DAC necessary perms(link; rdwr) � DAC current perms(pid?;�d))

LinkOK UFS b= (AbsolutePathname ^
AbsolutePathname[xlpn?=lpn?;xstart�d!=start�d!;xpn!=pn!])

(LinkPermittedDAC ^
LinkBAS)

^ �DAC

UnlinkPermittedDAC

DAC

BasicAccessSystem

LegalPathnames

DACVisiblePathname

pid? : PID

start�d? : FID

pn? : PATHNAME

�d == pathname �d(start�d?;pn?) �
DAC necessary perms(unlink; rdwr) � DAC current perms(pid?;�d)

CLI Technical Report 120 35

UnlinkOK UFS b= AbsolutePathname

(UnlinkPermittedDAC ^ RegularFile ^ UnlinkBAS)
^ �DAC

The UFS requirement that

dom fdac = dom fcontents

implies that if UnlinkOK UFS results in the �le being GC'd, then the DAC �le attributes (fdac(�d))

must be \GC'd" as well. DestroyFileAttrDAC describes removing �d from the domain of fdac, but

DestroyFileAttrDAC is never invoked explicitly.

Read, Write, Close

Read and write operations are permitted on open �les. The intended DAC constraint is that a process can

only read or write �les to which it has permission. But the open operation/kernel call acts as a \gatekeeper"

for read, write, and close. So once the open operation has checked permission, read and write need only

check that the �le was opened in an appropriate access mode. The operationWriteOK UFS combines the

two BasicAccessSystem operations WriteBAS and AppendBAS, as the Unix kernel call write does.

If the permissions associated with a �le are constant, then a process will only be permitted to read or

write a �le to which it has the appropriate permission. However, if �le permissions can change dynamically,

then the �le system no longer has this property. Rather, a weaker condition holds: a process will only be

permitted to read or write a �le to which it or an ancestor had appropriate permission when the Open

operation was performed.

ReadOK UFS b= UFS ^ ReadBAS[cpid=pid?]
^ �DAC

CloseOK UFS b= UFS ^ CloseBAS[cpid=pid?]
^ �DAC

WriteOK UFS b= UFS

^ (((FdToOid[cpid=pid?]OpenedForWrite) ^WriteBAS[cpid=pid?])

_ ((FdToOid[cpid=pid?]OpenedForAppend) ^ AppendBAS[cpid=pid?]))
^ �DAC

Remark

on the

Z

We use the form predicatei ^ state transitioni to indicate that the ith state transition only

applies when the ith predicate holds. We use this form, rather than phrasing it as predicatei)
state transitioni, because the implication is vacuously true if the predicate is not satis�ed.

Thus the schema is vacuously satis�ed if none of the predicates are satis�ed. When we add error

reporting and return codes to our model, we want to be sure that the schemas modeling successful

transitions are not also satis�ed (even vacuously) under conditions that should report an error.

CLI Technical Report 120 36

11 Mandatory Access Controls

We treat the speci�cation of the MAC layer analogously to the speci�cation of the DAC layer. Both access

control layers have an access control policy that controls an access mechanism through an interface-language

of \permissions". The DAC and MAC policies take consider di�erent attributes of processes and �les, and

they deal with di�erent languages of permissions, but the same abstract structure describes both.

The Synergy MAC layer uses extended permissions to provide �ner-grained control of �le access. Each �le

and each process has an associated security context, which identi�es the security-related attributes needed

to make a policy decision. The MAC policy produces a set of extended permissions describing permitted

access based on the security contexts of the user requesting access and the �le being accessed.

The MAC operations and permissions described here are based on informal discussions of the Synergy

�le system in Fall 1994. These speci�cations do not re
ect the full semantics of Synergy prototype.

MAC PERM ::= read perm j write perm j exec perm j append perm j
create perm j delete perm j search perm j
get context perm j set context perm

MAC PERMS == (MAC PERM)

[SECCONTEXT]

As in the DAC layer, we de�ne schemas to encapsulate the �le and process attributes relevant to the

policy decision.

MAC File Attributes

context : SECCONTEXT

MAC Process Attributes

context : SECCONTEXT

As in the DAC layer, we de�ne the set of operations a process may perform on a �le. The policy decision

is based on the MAC attributes of the process and the �le, and the operation being requested.

The SFS open operation accepts several modi�ers, called modes. The description of an operation is a

pair, a MACops and an EXT MODE.

MACops ::=mac open jmac link jmac unlink jmac create j
mac search jmac append jmac delete j
mac get context jmac set context

EXT MODE ::= xm read j xm write j xm readwrite j xm append j
xm truncate j xm excl

CLI Technical Report 120 37

We de�ne the MAC schema quite analogously to the earlier DAC schema. The two functions fmac and

pmac map �les and processes to their MAC-related attributes. The function MAC current perms maps

a pid and an �d to the set of extended permissions describing how that process is permitted to operate on

that �le. The de�nition of that set of permissions is encapsulated in the function MAC policy perms.

This policy computation considers only the relevant MAC attributes of the process and �le in question (i.e.,

their SECCONTEXTs). We provide only the signature ofMAC policy perms, leaving the actual policy

unspeci�ed. Finally,MAC necessary perms produces the set of permissions required for an operation to

complete without error.

MAC

fmac : FID MAC File Attributes

pmac : PID MAC Process Attributes

MAC current perms : PID�FID MAC PERMS

MAC necessary perms :MACops�EXT MODE MAC PERMS

MAC policy perms : (SECCONTEXT� SECCONTEXT) MAC PERMS

8pid : PID; �d : FID �
MAC current perms(pid;�d) =

MAC policy perms((pmac pid):context; (fmac �d):context)

MAC necessary perms(mac open;xm read) = fread permg

MAC necessary perms(mac open;xm readwrite) = fread perm;write permg

MAC necessary perms(mac open;xm write) = fwrite permg

MAC necessary perms(mac open;xm append) = fappend permg

8ext mode : EXT MODE �
MAC necessary perms(mac search; ext mode) = fsearch permg ^
MAC necessary perms(mac create; ext mode) = fcreate permg ^
MAC necessary perms(mac delete; ext mode) = fdelete permg ^
MAC necessary perms(mac get context; ext mode) = fget context permg ^
MAC necessary perms(mac set context; ext mode) = fset context permg

We could have used a di�erent decomposition for these security-related system components. For ex-

ample, we might de�ne one schema for fmac and pmac, which represent �le and process attributes

that normally change during system operation, and a separate schema for MAC policy perms and

MAC necessary perms, which generally change less often, if at all, during system operation. That

way we distinguish the policy and enforcement tests from dynamic process and �le attributes. So then even

operations that may dynamically alter �le or process attributes clearly leave the policy unchanged.

Analogously to the DAC layer, we de�ne the notion of a pathname being visible to a process. We do this

with two schemas. MACVisiblePathnames introduces the function MAC visible pathnames, which

maps a process and a starting �d to the set of pathnames that process may \see" in a given �le system state.

The schemaMACVisiblePathname takes inputs pid?, and (start�d?;pn?) and asserts the property that

pn? is a member of the process's Mac visible pathnames.

We may want to include both DAC and MAC access controls at the SFS level. This is easily done by

including the both relevant MAC schema and the relevant DAC schema in the SFS de�nition. For example,

if we want to assure that a pathname is visible under both the MAC and DAC policies, we might include

both MACVisiblePathname and DACVisiblePathname in a schema de�nition.

CLI Technical Report 120 38

MACVisiblePathnames

FileSpace

LegalPathnames

MAC

MACvisible pathnames : PID�FID! (PATHNAME)

8pid : PID; �d : FID; pn : PATHNAME �
hi 2MACvisible pathnames(pid;�d)

^
(#pn > 0

^ pn 2MACvisible pathnames(pid;�d)

, front(pn) 2MACvisible pathnames(pid;�d)

^ (�d;pn) 2 legal pathnames
^MAC necessary perms(mac search;xm read)

�MAC current perms(pid;pathname �d(�d; front(pn))))

MACVisiblePathname

MACVisiblePathnames

pid? : PID

start�d? : FID

pn? : PATHNAME

pn? 2MACvisible pathnames(pid?; start�d?)

12 The Synergy File System Interface

This section provides the form for describing the SFS layer. The speci�c details of the operations and MAC

tests are merely meant to be illustrative.

SFS

UFS

MAC

dom fmac = dom fcontents

dompmac = dompfdtable

Create

Note that CreatePermittedMAC checks the permissions of the directory in which the new �le would

reside.

CLI Technical Report 120 39

CreatePermittedMAC

MAC

BasicAccessSystem

MACVisiblePathname

start�d? : FID

pn? : PATHNAME

front(pn?) 2MACvisible pathnames(pid?; start�d?)

(�d == pathname �d(start�d?; front(pn?)) �
MAC necessary perms(mac create;xm readwrite)

�MAC current perms(pid?;�d))

The operation CreateFileAttrsMAC creates the initial MAC �le attributes for a new �le. It will

probably share with (or perhaps implement) the de�nition of the SetContext operation. However, since it

is used here as a part of the Create operation, it need not perform any MAC checks.

CreateFileAttrsMAC

�MAC

LegalPathnames

seccontext? : SECCONTEXT

pid? : PID

start�d? : FID

pn? : PATHNAME

pathname �d(start�d?;pn?) =2 dom fmac

#pn? > 0

fmac = fpathname �d(start�d?;pn?)g fmac0

(fmac0(pathname �d(start�d?;pn?))):context = seccontext?

pmac0 = pmac

CreateFileAttrsMAC

We conjoin the predicate properties of CreatePermittedMAC and CreateOK UFS. So the the

overall CreateOK SFS operation is only de�ned when all of their properties are satis�ed (e.g., both MAC

and DAC tests).

CreateOK SFS b= (AbsolutePathname

(CreatePermittedMAC ^ CreateFileAttrsMAC))

^ CreateOK UFS

Open

CLI Technical Report 120 40

OpenPermittedMAC

MAC

BasicAccessSystem

MACVisiblePathname

start�d? : FID

pn? : PATHNAME

xmode? : EXT MODE

(�d == pathname �d(start�d?;pn?) �
MAC necessary perms(mac open;xmode?)

�MAC current perms(pid?;�d))

OpenExistingFileOK SFS b= (AbsolutePathnameOpenPermittedMAC)

^ OpenExistingFileOK UFS

^ �MAC

Link

LinkPermittedMAC

MAC

BasicAccessSystem

MACVisiblePathnames

pid? : PID

start�d?;xstart�d? : FID

pn?;xpn? : PATHNAME

front(pn?) 2MACvisible pathnames(pid?; start�d?)

xpn? 2MACvisible pathnames(pid?;xstart�d?)

(�d == pathname �d(start�d?; front(pn?)) �
MAC necessary perms(mac link;xm readwrite)

�MAC current perms(pid?;�d))

LinkOK SFS b= (AbsolutePathname ^
AbsolutePathname[xlpn?=lpn?;xstart�d!=start�d!;xpn!=pn!])

(LinkPermittedMAC

^ LinkOK UFS)

^ �MAC

Unlink

CLI Technical Report 120 41

UnlinkPermittedMAC

MAC

BasicAccessSystem

LegalPathnames

MACVisiblePathname

pid? : PID

start�d? : FID

pn? : PATHNAME

�d == pathname �d(start�d?; front(pn?)) �
MAC necessary perms(mac unlink;xm readwrite)

�MAC current perms(pid?;�d)

The Unlink SFS operation removes an entry from the directory (if MAC and DAC permissions allow

it). The MAC �le attributes associated with the �le are removed when the �le is GC'd from the �le space

(see FileSpaceGC, CloseBAS, and UnlinkBAS). This follows from the requirement that in all SFS

states the domain of fmac is the same as the domain of fcontents. File attributes are associated with �les,

not with directory entries. Hence they are not necessarily a�ected each time a directory entry is deleted.

UnlinkOK SFS b= (AbsolutePathname

(UnlinkPermittedMAC ^ UnlinkOK UFS))

^ �MAC

Read, Write, Close

ReadOK SFS b= ReadOK UFS

WriteOK SFS b=WriteOK UFS

CloseOK SFS b= CloseOK UFS

Get Context

GetContextPermittedMAC

MAC

LegalPathname

MACVisiblePathname

pid? : PID

start�d? : FID

pn? : PATHNAME

(�d == pathname �d(start�d?;pn?) �
MAC necessary perms(mac get context;xm readwrite)

�MAC current perms(pid?;�d))

CLI Technical Report 120 42

GetContext

MAC

LegalPathname

�d? : FID

seccontext! : SECCONTEXT

seccontext! = (fmac(�d?)):context

GetContextOK SFS b= AbsolutePathname

(GetContextPermittedMAC ^
(PathnameLookupGetContext))

13 Reactions to the Z notation

We are both impressed with the simplicity of simple speci�cations in Z, and with the complexity of anything

larger.

1. Z encourages de�ning a system state in terms a large number of state variables. It provides little

mechanism for structuring the state.

2. Standard Z usage requires that a schema representing a state transition specify the new value of all

state variables.

That is, the inclusion of �S in a schema representing a state transition on the system state described

in schema S introduces all of the variables in S0 (i.e., all of the primed state-variables). If the value

any of these primed variables are not speci�ed in the state-transition schema, then those values are

completely unconstrained and completely unrelated to the corresponding initial state variable (i.e., the

corresponding unprimed variable). Since there tend to be many state variables, this mechanism is error

prone.

3. Many simple errors in Z speci�cations prove diÆcult to uncover.

(a) Use of redundant input/output variables in schemas.

If you don't include redundant variable declarations in a schema that inherits them from another

schema, then the very variables of interest to your schema are not made explicit in it.

If you do include redundant variable declarations, there is no protection from misspelling variables

names.

(b) Sometimes primed variables are left unspeci�ed in a schema, because that schema will later be

combined with other schemas that do specify that variable. But there is neither a mechanism to

declare this intent, nor an easy mechanism to detect which variables are left unspeci�ed. This

problem is particularly noticeable as the number state variables gets large, and you attempt to

combine schemas (via schema inclusion or composition).

Type checking is a very useful means of �nding �rst-order errors in a Z speci�cation. But it by no

means enough.

CLI Technical Report 120 43

We have not investigated the \object oriented" variations of Z. Perhaps by applying the structuring

principles of object-oriented programming to Z speci�cations, larger-sized speci�cations will become more

manageable.

As part of this e�ort an executable model of this speci�cation was written using the ACL2 system.

Rephrasing the speci�cation in ACL2 exposed some minor errors. Getting the model accepted by the ACL2

system amounts to a proof that the model is consistent.

14 Errors Uncovered by ACL2 Model

Here is a summary of errors detected during the development of this Z speci�cation by building an ACL2

model of the speci�cation. The ACL2 model only went as far as the DAC layer. (These errors have been

corrected, and so do not appear in the Z speci�cation in this report.)

1. Input name mismatch. In the schema LinkFS the schemaRegularFile was included \above the line."

RegularFile was intended to apply to the existing �le, but RegularFile relates to inputs start�d?

and pn?, whereas the existing �le input for LinkFS is �d?.

2. Contradiction. The schemas RegularFile and NonExistentFile are contradictory; that is, they

denote disjoint sets of bindings, and so no bindings satisfy both schemas. Since LinkFS included them

both, no bindings would have satis�ed LinkFS. Of course, RegularFile was intended to apply to the

existing �le, and NonExistentFile was intended to apply to the new pathname for that �le.

3. Incorrect speci�cation. The schemaOpenFT incorrectly truncated �les when opening them for writing,

even if the �le was being opened in append mode.

4. Use of unde�ned expressions. Zed permits the use of expressions which mention a function applied to

arguments not in the domain of that function. Zed says such expressions are meaningless. However, it

is not always obvious that the author meant to write a meaningless expression.

In the schema OnlyOpenDirectoryRDONLY the expression ftype(�d?) is used without requiring

�d? 2 dom ftype. Thus, sometimes the schema's predicate is meaningless. We may know (or believe)

that the context of use of always requires �d? 2 dom ftype, because most other operations require it.

ACL2 requires that functions only be applied to arguments in their domains. So this casual style was

not permitted.

5. Framing error. The LinkBAS operation did not specify that state variables ftype and RootFid

remained unchanged.

6. Framing error. The CreateBAS operation did not specify that state variables FileTable and

ProcessTable remained unchanged. However, the real error was that CreateBAS should not have

been �BasicAccessSystem at all!

7. Importing error. The schema LinkFS imported the schema LegalPathname, rather than the schema

LegalPathnames. The former speci�es that the pathname identi�ed by (start�d?; pn?) names an

existing �le. The schema LegalPathnames just introduces the legal pathnames (the set of legal

pathnames) as a schema variable. The properties \below the line" in LinkFS then related its inputs

to the set legal pathnames.

CLI Technical Report 120 44

References

[Bach, 1986] Maurice J. Bach.

The Design of the Unix Operating System.

Prentice-Hall, Englewood Cli�s, New Jersey, 07632, 1986.

[CSRG, 1986] CSRG.

Unix User's Reference Manual.

Computer Science Division, Dept. of Electrical Engineering and Computer Science, University of Califor-

nia, Berkeley, California, 4.3 berkeley softwar distribution edition, 1986.

[Le�er et al., 1989] S.J. Le�er, M.K. McKusick, M.J. Karels, and J.S. Quarterman.

The Design and Implementation of the 4.3BSD Unix Operating System.

Addison-Wesley, 1989.

[Morgan and Sufrin, 1987] Carol Morgan and Bernard Sufrin.

Speci�cation for the unix �ling system.

In Ian Hayes, editor, Speci�cation Case Studies, pages 91{140. Prentice-Hall, 1987.

[Spivey, 1989] J.M. Spivey.

The Z Notation: A Reference Manual.

Prentice Hall, 1989.

[Stevens, 1992] W. Richard Stevens.

Advanced Programming in the UNIX Environment.

Addison-Wesley, 1992.

Index

absolute

PATHNAMETYPE constant, 31

AbsolutePathname, 32

ACCESS MODE, 14

AddFType, 13

AddProcessFD, 20

append

ACCESS MODE constant, 14

AppendBAS, 26

BasicAccessSystem, 23

BasicFileSpace, 4

BYTE, 4

CloseBAS, 24

CloseFT, 17

CloseOK SFS, 41

CloseOK UFS, 35

constants

absolute, 31

append, 14

create, 28

link, 28

open, 28

r (PERM), 27

rdonly, 14

rdwr, 14

regular (FTYPE), 7

relative, 31

search, 28

unlink, 28

w (PERM), 27

wronly, 14

x (PERM), 27

create

DACops constant, 28

CreateBAS, 25

CreateBFS, 5

CreateFileAttrsDAC, 33

CreateFS, 14

CreateOK SFS, 40

CreateOK UFS, 33

CreatePermittedDAC, 32

CreatePermittedMAC, 39

DAC, 28

DAC File Attributes, 28

DAC Process Attributes, 28

DACops, 28

DACVisiblePathname, 30

DACVisiblePathnames, 30

data translations, 3

DataLength, 25

DeleteFType, 14

DeleteProcessFD, 20

DestroyBFS, 5

DestroyFileAttrDAC, 29

DirContents, 7

DIRECTORY, 7

directory �ds, 9

DirectoryFile, 11

DuplicateFD, 21

EmptyDirectory, 11

ExistentFile, 10

ExistsFileTableReferenceToFid, 22

ExistsLinkReferenceToFid, 22

ExistsReferenceToFid, 22

ExistsReferenceToFileTableEntry, 22

EXT MODE, 37

FD, 19

FdToFid, 19

FdToOid, 19

FID, 4

FILE, 4

FileLength, 5

FileSpace, 8

FileSpaceGC, 22

FileTable, 15

FileTableGC, 22

ForkBAS, 27

ForkPT, 21

FPERMS, 27

free types

BYTE, 4

DIRECTORY, 7

FD, 19

FID, 4

FILE, 4

FTYPE, 7

GROUP, 27

OID, 14

PATHNAME, 7

45

CLI Technical Report 120 46

PID, 19

SYLLABLE, 7

USER, 27

FTYPE, 7

functions

DAC current perms, 28

DAC necessary perms, 28

DACvisible Pathnames, 30

DirContents, 7

directory �ds, 9

fcontents, 4

fdac, 28

fmac, 37

ft�d, 15

ftmode, 15

ftposn, 15

legal pathname, 9

lpnpathname, 31

lpntype, 31

MAC current perms, 37

MAC necessary perms, 37

MAC policy perms, 37

MACVisible Pathnames, 38

pad�le, 4

ParseDir, 7

pathname �d, 9

pdac, 28

pfdtable

state variable, 19

pmac, 37

rooted pathname �d, 23

UnParseDir, 7

GetContext, 42

GetContextOK SFS, 42

GetContextPermittedMAC, 42

GROUP, 27

IncrPosnFT, 18

LABELED PATHNAME, 31

legal pathname, 9

LegalPathname, 10

LegalPathnames, 9

link

DACops constant, 28

LinkBAS, 24

LinkFS, 12

LinkOK SFS, 40

LinkOK UFS, 34

LinkPermittedDAC, 34

LinkPermittedMAC, 40

lpnpathname, 31

lpntype, 31

MAC, 37

MAC File Attributes, 36

MAC PERM, 36

MAC PERMS, 36

MAC Process Attributes, 37

MACops, 37

MACVisiblePathname, 38

MACVisiblePathnames, 38

MaybeTruncateFile, 17

NewFid, 5

NonExistentFile, 10

OID, 14

OidToFid, 15

OidToPosn, 15

OnlyOpenDirectoriesRDONLY, 24

open

DACops constant, 28

OpenBAS, 24

OpenedForAppend, 19

OpenedForRead, 18

OpenedForWrite, 19

OpenExistingFileOK SFS, 40

OpenExistingFileOK UFS, 34

OpenFT, 17

OpenInternalFT, 16

OpenPermittedDAC, 34

OpenPermittedMAC, 40

pad�le, 4

ParseDir, 7

PATHNAME, 7

pathname �d, 9

PathnameLookup, 10

PATHNAMETYPE, 31

PERM, 27

PID, 19

ProcessTable, 19

r

PERM constant, 27

rdonly

ACCESS MODE constant, 14

rdwr

ACCESS MODE constant, 14

CLI Technical Report 120 47

ReadBAS, 25

ReadBFS, 6

ReadOK SFS, 41

ReadOK UFS, 35

regular

FTYPE constant, 7

RegularFile, 11

relative

PATHNAMETYPE constant, 31

rooted pathname �d, 23

RootedPathnames, 23

Root�d is preserved, 11

schemas, see also types

AbsolutePathname, 32

AddFType, 13

AddProcessFD, 20

AppendBAS, 26

BasicAccessSystem, 23

BasicFileSpace, 4

CloseBAS, 24

CloseFT, 17

CloseOK SFS, 41

CloseOK UFS, 35

CreateBAS, 25

CreateBFS, 5

CreateFileAttrsDAC, 33

CreateFileAttrsMAC, 39

CreateFS, 14

CreateOK SFS, 40

CreateOK UFS, 33

CreatePermittedDAC, 32

CreatePermittedMAC, 39

DAC, 28

DAC File Attributes, 28

DAC Process Attributes, 28

DACVisiblePathname, 30

DACVisiblePathnames, 30

DataLength, 25

DeleteFType, 14

DeleteProcessFD, 20

DestroyBFS, 5

DestroyFileAttrDAC, 29

DirectoryFile, 11

DuplicateFD, 21

EmptyDirectory, 11

ExistentFile, 10

ExistsFileTableReferenceToFid, 22

ExistsLinkReferenceToFid, 22

ExistsReferenceToFid, 22

ExistsReferenceToFileTableEntry, 22

FdToFid, 19

FdToOid, 19

FileLength, 5

FileSpace, 8

FileSpaceGC, 22

FileTable, 15

FileTableGC, 22

ForkBAS, 27

ForkPT, 21

FPERMS, 27

GetContext, 42

GetContextOK SFS, 42

GetContextPermittedMAC, 42

IncrPosnFT, 18

LegalPathname, 10

LegalPathnames, 9

LinkBAS, 24

LinkFS, 12

LinkOK SFS, 40

LinkOK UFS, 34

LinkPermittedDAC, 34

LinkPermittedMAC, 40

MAC, 37

MAC File Attributes, 36

MAC Process Attributes, 37

MACVisiblePathname, 38

MACVisiblePathnames, 38

MaybeTruncateFile, 17

NewFid, 5

NonExistentFile, 10

OidToFid, 15

OidToPosn, 15

OnlyOpenDirectoriesRDONLY, 24

OpenBAS, 24

OpenedForAppend, 19

OpenedForRead, 18

OpenedForWrite, 19

OpenExistingFileOK SFS, 40

OpenExistingFileOK UFS, 34

OpenFT, 17

OpenInternalFT, 16

OpenPermittedDAC, 34

OpenPermittedMAC, 40

PathnameLookup, 10

ProcessTable, 19

ReadBAS, 25

ReadBFS, 6

ReadOK SFS, 41

ReadOK UFS, 35

CLI Technical Report 120 48

RegularFile, 11

RootedPathnames, 23

Root�d is preserved, 11

SeekEOF, 18

SeekFT, 18

TruncateFile, 17

TruncatingOpen, 17

UFS, 31, 39

UnlinkBAS, 25

UnlinkFS, 13

UnlinkOK SFS, 41

UnlinkOK UFS, 35

UnlinkPermittedDAC, 35

UnlinkPermittedMAC, 41

WriteBAS, 26

WriteBFS, 6

WriteOK SFS, 41

WriteOK UFS, 36

search

DACops constant, 28

SECCONTEXT, 36

SeekEOF, 18

SeekFT, 18

state variables

cpid, 31, 39

fdac, 28

fmac, 37

ft�d, 15

ftmode, 15

ftposn, 15

pcwd, 31, 39

pdac, 28

pfdtable, 19

pmac, 37

SYLLABLE, 7

translations, see data translations

TruncatingOpen, 17

types, see also free types

ACCESS MODE, 14

DAC File Attributes, 28

DAC Process Attributes, 28

DACops, 28

EXT MODE, 37

FPERMS, 27

LABELED PATHNAME, 31

MAC PERM, 36

MAC PERMS, 36

MACops, 37

PATHNAMETYPE, 31

PERM, 27

PERMS, 27

UFS, 31, 39

unlink

DACops constant, 28

UnlinkBAS, 25

UnlinkFS, 13

UnlinkOK SFS, 41

UnlinkOK UFS, 35

UnlinkPermittedDAC, 35

UnlinkPermittedMAC, 41

UnParseDir, 7

USER, 27

w

PERM constant, 27

WriteBAS, 26

WriteBFS, 6

WriteOK SFS, 41

WriteOK UFS, 36

wronly

ACCESS MODE constant, 14

x

PERM constant, 27

