
CLI Technical Report 103 1

c

2

A Mathematical Model

of the Mach Kernel:

Kernel Requests

William R. Bevier and Lawrence M. Smith

Technical Report 103 December, 1994

Computational Logic, Inc.

1717 West Sixth Street, Suite 290

Austin, Texas 78703-4776

TEL: +1 512 322 9951

FAX: +1 512 322 0656

EMAIL: bevier@cli.com, lsmith@cli.com.

Copyright c 2004 Computational Logic, Inc.

Contents

1 Introduction 1

2 IPC Interface 7

2.1 Introduction . 7

2.2 mach msg . 9

2.3 Send Success . 11

2.4 Send Failure . 12

2.5 Receive Success . 14

2.6 Receive Failure . 15

2.6.1 Problems with Header Arguments 16

2.6.2 Other Receive Errors 17

2.7 Message Descriptors . 17

2.8 Extracting resources from a task 20

2.9 Inserting resources into a task 24

3 Port Interface 27

3.1 mach port allocate . 28

3.2 mach port allocate name 31

3.3 mach port deallocate . 32

3.4 mach port destroy . 34

3.5 mach port extract right 36

3.6 mach port get refs . 38

3.7 mach port get set status 41

3.8 mach port insert right 43

3.9 mach port mod refs . 47

3.10 mach port move member 52

3.11 mach port names . 54

i

ii

3.12 mach port rename . 56

3.13 mach port request noti�cation 58

3.14 mach port set qlimit . 63

3.15 mach port type . 65

3.16 mach reply port . 67

4 Virtual Memory Interface 69

4.1 vm allocate . 70

4.2 vm copy . 74

4.3 vm deallocate . 77

4.4 vm inherit . 79

4.5 vm map . 81

4.6 vm protect . 86

4.7 vm read . 89

4.8 vm region . 92

4.9 vm write . 95

5 Thread Interface 97

5.1 mach thread self . 98

5.2 thread create . 99

5.3 thread get special port 101

5.4 thread set special port 103

5.5 thread terminate . 105

6 Task Interface 107

6.1 mach task self . 108

6.2 task create . 109

6.3 task get special port . 113

6.4 task set special port . 115

6.5 task terminate . 117

6.6 task threads . 119

7 Common Speci�cations 121

7.1 Introduction . 122

7.2 Actions on Local Names 122

7.2.1 Allocating Rights 123

7.2.2 Deallocating Port Rights 125

iii

7.2.3 Moving Port Rights 128

7.3 Actions on Virtual Memory 132

7.3.1 Temporally Allocated 132

7.3.2 Extracting and Inserting Data 133

7.4 Entity Termination . 133

7.4.1 Introduction . 133

7.4.2 Informal Rules for Dependent Entity Termination 134

7.4.3 A Formal Speci�cation for Entity Termination . . 136

Chapter 1

Introduction

This report presents a partial speci�cation for Mach kernel requests.

It is based on a mathematical description of a legal Mach kernel state

given in [BS94b]. That report gives a speci�cation of the entities that

may exist in a legal Mach kernel state, and their properties. We restrict

our attention in this report to those requests that can be described in

terms that are axiomatized in [BS94b]. Therefore, we describe only

a strict subset of the requests discussed in the Mach kernel interface

manual [Loe91]. An overview of the legal state speci�cation and kernel

request speci�cation can be found in [BS94a]. In particular, it provides

a detailed introduction to speci�cations for kernel requests. Familiarity

with [BS94a] and [BS94b] is assumed and is important.

The actions required of a kernel request are speci�ed by the asser-

tion and disassertion of relations on entities. If one understands the

abstract relations in which entities can participate, one can follow this

speci�cation entirely at that level. The ability to do so is one of the

main bene�ts of a speci�cation. To understand how the speci�cation

applies to a Mach implementation, one must understand how these re-

lations are implemented. In fact, the implementation of each relation

is relatively straightforward in the Mach 3.0 kernel. Notes on how how

entities and relations are implemented in Mach 3.0 are given in [BS94b].

This work was not done in collaboration of Mach 3.0 implementors.

For this reason, as well as the absence of any means other than human

inspection to verify the implementation with respect to this speci�ca-

tion, this document may not reect aspects of the latest design. Ad-

1

2

ditionally, the authors may have made some mistakes. We have tried

our best to accurately reect a large part of the Mach 3.0 design. We

believe that we have addressed the most stable design elements.

The format of a kernel request speci�cation is similar to the doc-

umentation for a request in a kernel interface manual. We summarize

functionality, and describe input parameters and returned values. Sub-

sequently, we give formulas which state requirements on computations

which are legal implementations of the request. Formulas are aug-

mented with English text.

One of the most important sections in this document is Chapter 7.

Each kernel request speci�cation appeals to primitive relations intro-

duced originally in [BS94b], and to common, intermediate speci�cations

de�ned in terms of those primitives. These common de�nitions are col-

lected in Section 7, and provide detailed requirements on the behavior

of a kernel request that are diÆcult to make both concise and precise

in English.

The speci�cation for mach msg occurs �rst in this document, mim-

icking the organization of [Loe91]. However, this is one of the most

complex interfaces, and we suggest that the reader look �rst at a sim-

pler speci�cation, such as task create, to get a feel for the notation.

Notation

A detailed discussion of notation is given in [BS94a]. We present a sum-

mary of those conventions, and a few additional conventions followed

in this report.

Fonts

We use font shifts to provide visual clues for the uses of identi�er and

function names in formulas.

� \var" { A valuable printed bold is a free variable in a temporal

formula. It represents an input parameter or output variable.

� \var" { A variable printed in italics is one that is bound in the

formula by a quanti�er.

Introduction 3

� \'flag" { An identi�er in typewriter font preceded by an apos-

trophe is a literal. These are used to represent constants like

return code values.

� \nullname" { Small capitals also denote constants, but are typ-

ically used to identify system constants like the value of a null

port name.

� \local-namep (. . .)" { A function whose name is in lower-case

roman is a primitive state term, introduced in the legal state

speci�cation.

� \Mach-Port-Move-Member-Invalid-Name (. . .)" { A function whose

name is capitalized is a recognizer for a temporal behavior1.

Temporal Logic

A kernel request speci�cation is a predicate on a behavior| a sequence

of kernel states in which actions among various agents are interleaved.

A kernel request implementation satis�es the speci�cation if the pred-

icate holds on all behaviors that it can generate.

The temporal notation can indicate that an action is taken by an

agent | the entity in behalf of whom the actions take place. Steps

involved in a single thread of kernel behavior, and only those steps, are

labeled with the same agent. One can think of the agent as a stack of

thread identi�ers constructed by remote procedure calls. The topmost

element of the stack is the identi�er of the thread executing in behalf

of the next thread on the stack, and so on.

Parameters to kernel request speci�cations correspond to parame-

ters to the actual kernel requests. In the Mach 3.0 user interface, the

actual parameter supplied for some entity is a port which represents

that entity. A simple computation �nds the entity represented by the

port. This speci�cation ignores that interface. Parameters to the spec-

i�cation are members of the intended entity class, not a port which

represents a member of the class.

1If the argument list is empty, the parentheses are omitted.

4

The agent of a kernel request is thought of as an input parameter.

However, in these speci�cations, for the sake of economy, we do not

explicitly declare the agent as an input. There is always one agent of

interest, which we write as �.

Similarly, the return code is an out parameter of every request. We

denote the return code parameter by the symbol rc. We omit this

declaration from the list of parameters, but use rc in the speci�cations.

Here are examples of the temporal logic notation we use in writing

speci�cations. See [BS94a] for a thorough discussion.

5

3taskp (t)[�] Eventually.

Agent � reaches a state in which

t is a task.

3"taskp (t)[�] Eventually asserted.

Agent � \creates" task t.

In other words, the state predicate taskp(t)

is asserted in an �-step.

3#taskp (t)[�] Eventually disasserted.

Agent � \destroys" task t.

In other words, the state predicate taskp(t)

is disasserted in an �-step.

3ytaskp (t)[�] Eventual interference.

Some agent other than � eventually modi�es

property taskp(t). This is usually an error

condition.

3p ; 3q Sequential Composition.

Property p eventually occurs, followed

eventually by property q.

p ^ q Conjunction. (p and q).

p _ q Disjunction. (p or q).

: p Negation. (not p).

8 0 � x < n: p (x) Universal quanti�cation.

9 0 � x < n: p (x) Existential quanti�cation.

6

Chapter 2

IPC Interface

2.1 Introduction

Inter-process communication is accomplished in Mach with the mach msg

kernel service. This service allows a caller to send a message, receive a

message, or both. The latter case, the most general, is used in a remote

procedure call.

A remote procedure call from a client task to a server task involves

a number of steps.

1. The client task sets up a message bu�er data structure in its

address space. The contents of the message bu�er encode in-

structions from the task to the kernel for how the message to the

server should be constructed. It also speci�es the side e�ects the

task would like to see in its own resources.

2. The client task invokes mach msg requesting a send followed by

a receive. The client task gives to the kernel its local names for

three ports: the destination of the sent message, the reply port

(to which a the client requests a response to the message from the

server), and the source for the received message. The last two are

typically the same.

3. The kernel interprets the contents of the message bu�er, con-

structing the message from the client task's resources.

7

8

4. The kernel queues the message in the port.

5. The kernel processes the receive half of the client task's request.

Typically, the receive port's queue will be empty, so it waits.

6. At a later time, the server requests that a message be dequeued.

7. The kernel �lls a message bu�er in the server task that describes

the message and the side e�ects it caused in the server's resources.

The side e�ects include inserting a send right to the reply port.

8. The server uses the same mechanism to return the response to the

sender. (Typically it will receive its next request with the same

invocation of mach msg. In this case, no reply port is speci�ed.)

9. The original client task completes its receive.

Our speci�cation for mach msg corresponds to this decomposition of

steps.

In Section 2.2 we introduce the high-level speci�cation of mach msg.

The high-level speci�cation references predicates describing the sending

and receiving halves of the computation.

Sections 2.3 through 2.6 describe the sending and receiving opera-

tions in success and failure cases.

In Section 2.7 we introduce the message descriptor, which is an

abstraction of Mach's message bu�er data structure. The message de-

scriptor is a speci�cation artifact that allows us to ignore the details

of the layout of the encoding in the task's address space. A part of

sending a message is creating the message from the resources of a task

according to the instructions in a message descriptor. This operation

is speci�ed in Section 2.8.

Receiving a message causes rights and data to become a part of

the receiving task's resources, and a message descriptor describes the

transition. This operation is speci�ed in Section 2.9. 1

1The same mechanism is used on a send operation when it times out or is inter-

rupted. This \pseudo-receive" operation readies the message bu�er and its contents

for a retry. We do not specify this level of detail.

IPC Interface 9

2.2 mach msg

DESCRIPTION

Send and/or receive a message.

PARAMETERS

t. The invoking task entity.

options. A set of tokens from f'send, 'receive, 'send-timeout,

'receive-timeoutg.

send-name. If 'send 2options, the local name of the port to which

a message will be sent.

send-instr. Instruction for disposition of the send port name, one of

'make, 'copy, or 'move.

send-type. The type of right to be provided for the send port, one

of 'send or 'send-once.

rcv-name. If 'receive 2options, the local name for the receive

right of the port or port set from which a message will be received.

reply-name. For send, the local name of the port which will be the

reply port of the sent message, if any. For receive, the local name

for the reply port in the message. If no reply port is desired,

reply-name =nullname, reply-instr ='none, and reply-

type='none.

reply-instr. Instruction for disposition of the send reply port name,

one of 'make, 'copy, 'move, or 'none.

reply-type. For send, the type of right to be provided for the send

port, one of 'send, 'send-once, or 'none. For receive, the right

type for the reply-name, either 'send or 'send-once.

md. A message descriptor. For send, the message descriptor is pro-

vided by the calling task describing the contents of the message to

10

send. For receive, it is constructed by the kernel to describe the

message to the caller. The message descriptor is a speci�cation

artifact abstracting the encoding of instructions in the portion of

the task's address space designated as the message bu�er.

OUTCOMES

The Mach-Msgp predicate is speci�ed to recognize one of �ve cases.

1. Neither 'send nor 'receive are in options, so mach msg is a

no-op.

2. The ag 'send is in options, but not 'receive.

3. The ag 'receive is in options, but not 'send.

4. Both 'send and 'receive are in options, but the send fails. The

receive is not attempted.

5. Both 'send and 'receive are in options, and the send succeeds.

The cases decompose using four more primitive predicates, describing

send success, send failure, receive success, and receive failure.

Mach-Msgp

� Mach-Msg-Noop

_ Mach-Msg-Sendp

_ Mach-Msg-Rcvp

_ Mach-Msg-Send-Failure-No-Rcvp

_ Mach-Msg-Send-Success-Rcvp

Mach-Msg-Noop

� ('send 62 options)[�]

^ ('receive 62 options)[�]

^ 3"(rc = 'mach-msg-success)[�]

Mach-Msg-Sendp

� ('send 2 options)[�]

^ ('receive 62 options)[�]

^ (Mach-Msg-Send-Successp _ Mach-Msg-Send-Failurep)

IPC Interface 11

Mach-Msg-Rcvp

� ('send 2 options)[�]

^ ('receive 62 options)[�]

^ (Mach-Msg-Rcv-Successp _ Mach-Msg-Rcv-Failurep)

Mach-Msg-Send-Failure-No-Rcvp

� ('send 2 options)[�]

^ ('receive 2 options)[�]

^ Mach-Msg-Send-Failurep

Mach-Msg-Send-Success-Rcvp

� ('send 2 options)[�]

^ ('receive 2 options)[�]

^ (Mach-Msg-Send-Successp ; Mach-Msg-Rcvp)

2.3 Send Success

A computation is recognized as an instance of Mach-Msg-Send-Successp

if

� the local names send-name and reply-name are found to name

proper rights to destination and reply ports entities,

� a message is constructed from the message descriptor,

� the reply port (if any) is associated with the message, and

� the message is enqueued on the destination port.

Mach-Msg-Send-Successp

� 9 send-port 2 all-entities,

reply-port 2 (all-entities [fnull-ptrg), mg 2 all-entities:

(3(Extract-Destination (send-name, send-instr,

send-type, send-port)

^ Extract-Reply (reply-name, reply-instr,

reply-type, reply-port)

^ "messagep (mg)[�])

; Message-Is-Constructed (mg , reply-port)

; Message-Is-Queuedp (mg , send-port)

; 3"(rc = 'mach-msg-success)[�])

12

Message-Is-Constructed (mg , reply-port)

� Md-To-Messagep (md, jmdj, mg)

^ ((reply-port 6= null-ptr)[�]

! 3"reply-port-rel (mg , reply-port , reply-type)[�])

Message-Is-Queuedp (mg , p)

� 9 queue = messages (p): (3"(messages (p) = append (queue, hmgi))[�])

2.4 Send Failure

A send operation can fail for a number of reasons.

Mach-Msg-Send-Failurep

� Mach-Msg-Send-Header-Error

_ Mach-Msg-Md-Error

_ Mach-Msg-Bad-Message-Body

_ Mach-Msg-Send-Timeout

_ Mach-Msg-Send-Interrupted

_ Mach-Msg-Send-Resource-Shortage

Problems with header arguments

This section contains descriptions of return codes which result from

problems with arguments. The invalid destination return code results

when the destination (send) port is invalid. The invalid reply outcome

results when there is a problem determining the reply port from the

arguments. The invalid header outcome results when a �eld in the

header had a bad value.

Mach-Msg-Send-Header-Error

� Mach-Send-Invalid-Dest-Portp

_ Mach-Send-Invalid-Reply-Portp

_ Mach-Send-Invalid-Header-Types

Mach-Send-Invalid-Header-Types

� ((send-type = 'receive)[�]

_ (reply-type = 'receive)[�])

^ 3"(rc = 'mach-send-invalid-header)[�]

IPC Interface 13

Mach-Send-Invalid-Reply-Portp

� 3((reply-name 6= nullname)[�]

^ 3(: Legal-Name-Instr-Right (t, reply-name,

reply-instr, reply-type)

^ 3"(rc = 'mach-send-invalid-reply)[�]))

Mach-Send-Invalid-Dest-Portp

� 3(: Legal-Name-Instr-Right (t, send-name, send-instr,

send-type)

^ 3"(rc = 'mach-send-invalid-dest)[�])

Problems with the message body

This set of return codes indicate that a bad message descriptor element

was discovered. Invalid Right occurs when a port right in a message

descriptor element is not valid. Invalid Data occurs when a region of

memory designated as an out-of-line message element is either unallo-

cated or read-protected.

Mach-Msg-Bad-Message-Body

� Md-Exists-Invalid-Right _ Md-Exists-Invalid-Memory

Md-Exists-Invalid-Right

� 9 0 � i < jmdj, n 2 N , r 2 R, instr 2 f'make, 'copy, 'moveg:

(3((mdi = h'right, n, instr , ri)[�]

^ : Legal-Name-Instr-Right-Deadok (t, n, instr , r)

^ 3"(rc = 'mach-send-invalid-right)[�]))

Md-Exists-Invalid-Memory

� 9 0 � i < jmdj, 0 � va < address-space-limit,

0 � l < address-space-limit, instr 2 f'delete, 'no-deleteg,

va � va1 < (va + l):

(3((mdi = h'data, 'out-of-line, va, l , instri)[�]

^ ((: allocated (t, va1))[�]

_ allocated (t, va1)[�]

^ ('read 62 protection (t, trunc-page (va1)))[�])

^ 3"(rc = 'mach-send-invalid-memory)[�]))

14

Other Send Failures

The send operation will return a distinguished error code if the send

blocks, then either times out or is interrupted.

The kernel returns an error if the message bu�er is badly formatted2.

Mach-Msg-Md-Error

� : Mdp (md) ^ 3"(rc = 'mach-msg-bad-message)[�]

Mach-Msg-Send-Interrupted � 3"(rc = 'mach-send-interrupted)[�]

Mach-Msg-Send-Timeout

� ('send-timeout 2 options)[�]

^ 3"(rc = 'mach-send-timed-out)[�]

There are a number of ways a send can fail due to resource shortages.

Mach-Msg-Send-Resource-Shortage

� 3"(rc = 'mach-msg-ipc-space-send)[�]

_ 3"(rc = 'mach-msg-vm-space-send)[�]

_ 3"(rc = 'mach-msg-ipc-kernel-send)[�]

_ 3"(rc = 'mach-msg-vm-kernel-send)[�]

_ 3"(rc = 'mach-send-no-buffer)[�]

2.5 Receive Success

When mach msg is successful, the message is dequeued, the reply port

(if any) is taken from the message, and the contents of the message are

transferred to the receiver.

Receiving a message has four parts.

� The receiving thread blocks until the message queue is not empty.

This part does not appear in our speci�cation. We just say that

the message is eventually received (or not).

� The message is dequeued from the port.

2In the implementation of Mach 3.0, 'mach-msg-bad-message is re�ned to either

'mach-send-msg-too-small or 'mach-send-invalid-data.

IPC Interface 15

� A right to the reply port (if any) is taken from the message, and

the contents of the message are are extracted from the message

and inserted into the task's resources.

� The message descriptor describing the message is created.

Mach-Msg-Rcv-Successp

� 9 rcv-port 2 all-entities, reply-port 2 all-entities,

mg 2 all-entities:

(3Names-Receiving-Port (rcv-name, rcv-port)

; Message-Dequeuedp (mg , rcv-port)

; Port-Is-Message-Reply-Port (reply-port , mg)

; Message-To-Mdp (mg , md)

; #entityp (mg)[�]

; Insert-Reply-Port (reply-name, reply-type, reply-port)

; "(rc = 'mach-msg-success)[�])

The predicate Message-Dequeuedp recognizes a computation where

the message is the �rst in the port's queue, and all messsages are moved

up one position.

Message-Dequeuedp (mg , p)

� 39 queue = messages (p):

(3"(mg = queue0)[�] ; 3"(messages (p) = queue1..jqueuej)[�])

Port-Is-Message-Reply-Port (p, mg)

� 3(exists-reply-port (mg)[�]

^ 3"(p = reply-port (mg))[�]

^ 3"(reply-type = reply-right (mg))[�]

_ (: exists-reply-port (mg))[�] ^ 3"(p = null-ptr)[�])

2.6 Receive Failure

Receive can fail for a number of reasons.

16

Mach-Msg-Rcv-Failurep

� Mach-Msg-Rcv-Header-Error

_ Mach-Msg-Rcv-Timeout

_ Mach-Msg-Rcv-Interrupted

_ Mach-Msg-Rcv-Resource-Shortage

2.6.1 Problems with Header Arguments

\Header errors" result from problems with the port from which the

message is to be received. Either

� the local name does not designate a receive right or port set, or

� the local name is a receive right which is a member of a port set,

or

� or the local name designates a receive right or port set, but loses

that designation sometime during the computation, or

� the local name is a receive right that is moved into a port set at

some point during the computation.

Mach-Msg-Rcv-Header-Error

� Mach-Rcv-Invalid-Namep

_ Mach-Rcv-In-Port-Setp

_ Mach-Rcv-Port-Diedp

_ Mach-Rcv-Port-Changedp

Mach-Rcv-Invalid-Namep

� 3((: r-right (t, rcv-name))[�]

^ : port-set-namep (t, rcv-name)[�]

^ 3"(rc = 'mach-rcv-invalid-name)[�])

Mach-Rcv-In-Port-Setp

� 39 n1 2 N :

(r-right (t, rcv-name)[�]

^ in-port-set (t, rcv-name)[�]

^ 3"(rc = 'mach-rcv-in-set)[�])

IPC Interface 17

Mach-Rcv-Port-Diedp

� 3(r-right (t, rcv-name)[�]

^ 3(yr-right (t, rcv-name)[�]

^ 3"(rc = 'mach-rcv-port-died)[�]))

_ 3(port-set-namep (t, rcv-name)[�]

^ 3(yport-set-namep (t, rcv-name)[�]

^ 3"(rc = 'mach-rcv-port-died)[�]))

Mach-Rcv-Port-Changedp

� (3r-right (t, rcv-name)[�]

; (: in-port-set (t, rcv-name))[�]

; y: in-port-set (t, rcv-name)[�]

; "(rc = 'mach-rcv-port-changed)[�])

2.6.2 Other Receive Errors

The timed out outcome results when a message was not received within

the timeout value. The interrupted outcome results when the agent

thread receives a software interrupt.

Mach-Msg-Rcv-Interrupted � 3"(rc = 'mach-rcv-interrupted)[�]

Mach-Msg-Rcv-Timeout

� ('rcv-timeout 2 options)[�]

^ 3"(rc = 'mach-rcv-timed-out)[�]

A receive can also fail when a resource shortage occurs.

Mach-Msg-Rcv-Resource-Shortage

� 3"(rc = 'mach-msg-rcv-resource-shortage)[�]

2.7 Message Descriptors

Our formalization of a Mach kernel state in [BS94b] describes the con-

tents of a message as a indexed list, elements of which are either transit

data, a transit port right, or a transit null item.

18

The user interface to kernel IPC services includes a language for

a sending task to give the kernel instructions on both the intended

contents of the message to be sent and the side e�ects the sender intends

to observe as a result. For the receiver, the same language describes the

e�ects on the receiver of receiving the message. The instructions are

encoded in the task's message bu�er. We call the instructions encoded

in the message bu�er a message descriptor . The message descriptor is

a speci�cation artifact that allows us to ignore the details of the layout

of the encoding in the task's address space.

To summarize, have three distinct concepts:

1. The message bu�er, which is a portion of the calling task's address

space. This is outside of our speci�cation.

2. The message descriptor, which are the instructions encoded in

the message bu�er.

3. The message, which is constructed in the kernel state according

to the message descriptor, using the resources of the calling task.

Syntax of message descriptors

We de�ne a speci�cation predicate Mdp which describes the syntax of

an abstract message descriptor. Each element of a message descriptor

is one of:

� A tuple h'right, n, instr , ri instructing how a transit right

should be created.

� A tuple h'data, a, va, l , instri, instructing the kernel to create

a transit memory.

� A tuple h'null, instri, which instructs the kernel to include a

null message element.

Mdp (md)

� 8 0 � i < jmd j: (Md-Rightp (mdi) _ Md-Datap (mdi) _ Md-Nullp (mdi))

IPC Interface 19

Md-Rightp (mdi)

� 9 n 2 N , instr 2 f'move, 'copy, 'makeg, r 2 R:

(mdi = h'right, n, instr , ri)[�]

Md-Datap (mdi)

� 9 a 2 f'in-line, 'out-of-lineg, 0 � va < address-space-limit,

0 � l < address-space-limit, instr 2 f'delete, 'no-deleteg:

(mdi = h'data, a, va, l , instri)[�]

Md-Nullp (mdi)

� 9 instr 2 f'null-right, 'null-memory, 'dead-rightg:

(mdi = h'null, instri)[�]

20

2.8 Extracting resources from a task

A part of sending a message is creating the message from the resources

of a task, according to the instructions in a message descriptor. The

same mechanism is used to process other arguments.

The temporal predicate Md-To-Messagep recognizes a computation

in which a message is created from a task. The low-level operations on

port rights and address spaces are described in Chapter 7.

Md-To-Messagep (md , l , mg)

� 8 0 � i < l : Md-El-To-Messagep (md , mg , i)

^ 3(message-size (mg) = l)[�]

The predicate Md-El-To-Messagep summarizes the posible activities

in constructing a message element from a message descriptor element.

The possibilities are grouped into three classes by the type of message

element constructed.

Null message elements: null-right, dead-right, or null-memory.

Transit rights: make-send, copy-send, move-send, move-send-once,

make-send-once, or move-receive.

Transit memories: in line, no delete; out of line, delete; and out of

line, no delete.

Md-El-To-Messagep (md , mg , i)

� Md-Nulls-To-Messagep (md , mg , i)

_ Md-Rights-To-Messagep (md , mg , i)

_ Md-Memories-To-Messagep (md , mg , i)

Null message elements

A null message descriptor element can be tagged 'null-right, 'dead-right,

or 'null-memory. It causes the creation of a null message element with

the same tag. A null message element can also be created when the mes-

sage descriptor speci�es certain port right operations where the local

name is a dead right or when a zero-length out-of-line memory region

is speci�ed.

IPC Interface 21

Md-Nulls-To-Messagep (md , mg , i)

� 9 tag 2 f'null-right, 'null-memory, 'dead-rightg:

((mdi = h'null, tagi)[�]

^ 3"null-message-element-rel (mg , tag , i)[�])

Port rights

A port right is extracted from the sending task's port name space

from a given local name n, right type r 2 (R =f'receive, 'send,

'send-onceg), and instruction instr 2 f'copy, 'move, 'makeg. Transit

rights and the send port and reply port (if any) are all processed by this

mechanism. The 'move instruction causes a side e�ect in the sending

task | the right is removed. The other instructions cause a new right

to be cloned from an existing right3.

Creating a message element

The predicate Md-Rights-To-Messagep recognizes the transfer of a port

right from a task into a message element. A null message element can

be constructed from a dead right.

Md-Rights-To-Messagep (md , mg , i)

� 9 n 2 N , instr 2 f'make, 'copy, 'moveg, r 2 R:

((mdi = h'right, n, instr , ri)[�]

^ (9 p 2 all-entities:

(Extract-Port-Right (t, n, instr , r , p)

; "transit-right-rel (mg , p, r , i)[�])

_ (Extract-Dead-Right (t, n, instr , r)

; "null-message-element-rel (mg , 'dead-right, i)[�])))

Send destination and reply ports

The destination and reply ports for a sent message are processed with

the same mechanism as for transit send rights. In the implementation,

3The processing of a message element should \see" the side e�ects of previous

message elements. Examples: The second move-receive for a given port should fail;

two move-send operations should result in the refcount being decremented twice.

These are safety properties that are not stated here.

22

these ports are speci�ed by �elds in the message bu�er header; in our

formalization, they are speci�ed by separate arguments.

The function Extract-Send-Right is like Extract-Port-Right except

that the 'receive case is not allowed. The user can also specify that

no reply port is desired.

Extract-Destination (n, instr , r , p) � Extract-Send-Right (n, instr , r , p)

Extract-Reply (n, instr , r , p)

� Extract-Send-Right (n, instr , r , p)

_ (n = nullname)[�]

^ (hinstr , ri = h'none, 'nonei)[�]

^ 3"(p = null-ptr)[�]

Receive port

The argument rcv-name to mach-msg-receivep identi�es the port or

port set from which the message will be received. If it is the name of a

port set, the kernel can choose any port in the set4. If the name does

not name a port set, it must be a receive right which is not in a port

set.

Names-Receiving-Port (n, p)

� 39 n1 2 N :

(in-port-set (t, n1)[�]

^ (n = holding-port-set-name (t, n1))[�]

^ (named-port (t, n1) = p)[�])

_ 3(r-right (t, n)[�]

^ (named-port (t, n) = p)[�]

^ : in-port-set (t, n)[�])

Memories

Transit memories are extracted from the sending task's address space.

The data may be agged either 'in-line or 'out-of-line. The

4The implementation insures that messages received from a port set are received

in the order they were enqueued. This speci�cation only requires that the messages

from each port be received in order.

IPC Interface 23

'delete instruction causes the data to be deleted from the address

space as a side e�ect.

The implementation of transit memories is extremely complex. The

Mach implementation is well-known for its ability to transfer large

blocks of memory eÆciently by means of copy-on-write optimizations5.

For the purposes of this speci�cation, these implementation issues are

not relevant6.

Md-Memories-To-Messagep (md , mg , i)

� Md-In-Line-No-Delete-To-Messagep (md , mg , i)

_ Md-Out-Of-Line-No-Delete-To-Messagep (md , mg , i)

_ Md-Out-Of-Line-Delete-To-Messagep (md , mg , i)

Md-In-Line-No-Delete-To-Messagep (md , mg , i)

� 9 0 � va < address-space-limit, 1 � l < (address-space-limit � va):

((mdi = h'data, 'in-line, va, l , 'no-deletei)[�]

^ Va-Region-To-Messagep (va, mg , 'in-line, 0, l , i))

Md-Out-Of-Line-No-Delete-To-Messagep (md , mg , i)

� 9 0 � va < address-space-limit, 1 � l < (address-space-limit � va):

((mdi = h'data, 'out-of-line, va, l , 'no-deletei)[�]

^ Va-Region-To-Messagep (va, mg , 'out-of-line,

va � trunc-page (va), l , i))

Md-Out-Of-Line-Delete-To-Messagep (md , mg , i)

� 9 0 � va < address-space-limit, 1 � l < (address-space-limit � va):

((mdi = h'data, 'out-of-line, va, l , 'deletei)[�]

^ Va-Region-To-Messagep (va, mg , 'out-of-line,

va � trunc-page (va), l , i)

^ All-Eventually-Not-Allocated (t, va, l))

Va-Region-To-Messagep (va, mg , tag , o, l , i)

� 9 m 2 all-entities:

(3("memoryp (m)[�]

^ 3"temporary-rel (m)[�]

^ Extract-Va-Region (t, va, o, l , m)

^ 3"transit-memory-rel (mg , m, tag , o, l , i)[�]))

5See [BS94b] for a discussion of our model of transit memories.
6In fact, the details of the optimization are visible to the user. There are security

implications, for example.

24

2.9 Inserting resources into a task

Receiving a message causes rights and data to become a part of the

receiving task's resources. The same mechanism is used on a send op-

eration when it times out or is interrupted. This \pseudo-receive" oper-

ation readies the message bu�er and its contents for a retry. The pred-

icate Message-To-Mdp recognizes a computation in which a message's

contents are given to a task, and a message descriptor is constructed.

Message-To-Mdp (mg , md) � 8 0 � i < jmd j: Message-To-Md-Elp (mg , md , i)

Message-To-Md-Elp (mg , md , i)

� Message-Null-To-Md-Elp (mg , md , i)

_ Message-Right-To-Md-Elp (mg , md , i)

_ Message-Memory-To-Md-Elp (mg , md , i)

Null message elements

Receiving a null message element causes no side e�ects in the receiving

task. Only the message descriptor is a�ected.

Message-Null-To-Md-Elp (mg , md , i)

� null-message-element-rel (mg , 'null-right, i)[�]

^ 3"(mdi = h'null, 'null-righti)[�]

_ null-message-element-rel (mg , 'null-memory, i)[�]

^ 3"(mdi = h'null, 'null-memoryi)[�]

_ null-message-element-rel (mg , 'dead-right, i)[�]

^ 3"(mdi = h'null, 'dead-righti)[�]

Port rights

When copying a message into a task, the new resources are inserted and

a message descriptor is constructed to describe the activity. A received

message descriptor is simpler than a sent one in that there are fewer

choices: all rights are marked with the instruction 'move.

25

Message-Right-To-Md-Elp (mg , md , i)

� 9 p 2 all-entities, n 2 N , r 2 R:

(transit-right-rel (mg , p, r , i)[�]

^ Insert-Port-Right (t, p, n, r)

^ 3"(mdi = h'right, n, 'move, ri)[�])

The reply port (if any) is inserted into the receiver's name space in

the same way as transit rights.

Insert-Reply-Port (n, r , p)

� 3((p = null-ptr)[�] ^ (n = nullname)[�]

_ Insert-Send-Right (t, p, n) ^ (r = 'send)[�]

_ Insert-Send-Once-Right (t, p, n) ^ (r = 'send-once)[�])

Memories

The predicate Message-Memory-To-Md-Elp describes how a transit mem-

ory is inserted into the receiving task's address space.

In line data is copied into the receiver's message bu�er7.

Out of line data is mapped into an unallocated region of the re-

ceiver's address space. In the message descriptor, all out-of-line mem-

ory segments are marked 'delete.

Message-Memory-To-Md-Elp (mg , md , i)

� 9 m 2 all-entities, 0 � o < pagesize, 0 � va < address-space-limit,

1 � l < (address-space-limit � va):

(transit-memory-rel (mg , m, 'in-line, o, l , i)[�]

^ Insert-In-Line-Data (t, va, m, o, l)

^ 3"(mdi = h'data, 'in-line, va, l , 'no-deletei)[�]

_ transit-memory-rel (mg , m, 'out-of-line, o, l , i)[�]

^ Insert-Out-Of-Line-Data (t, va, m, o, l)

^ 3"(mdi = h'data, 'out-of-line, va, l , 'deletei)[�])

7We don't require that the given virtual address be within the message bu�er.

26

Chapter 3

Port Interface

27

28

3.1 mach port allocate

DESCRIPTION

Create a new right in the target task: either a receive right, an empty

port set, or a dead name.

PARAMETERS

t. The target task.

right. A ag indicating which right is requested, one of f'receive,

'dead-right, 'port-setg.

n. [out] The returned local port name.

OUTCOMES

There are �ve possible outcomes: success, invalid task, invalid value,

no space, and resource shortage.

Mach-Port-Allocatep

� Mach-Port-Allocate-Success

_ Mach-Port-Allocate-Invalid-Task

_ Mach-Port-Allocate-Invalid-Value

_ Mach-Port-Allocate-No-Space

_ Mach-Port-Allocate-Resource-Shortage

SPECIFICATION

In a successful outcome, either a new receive right is created, an empty

port set is created, or a dead name is created. Initially, the target task

must exist, and n is not a local name for the target task.

Port Interface 29

Mach-Port-Allocate-Success

� 3taskp (t)[�]

; 3(: local-namep (t, n))[�]

; Mach-Port-Allocate-Receive

_ Mach-Port-Allocate-Port-Set

_ Mach-Port-Allocate-Dead-Right

; 3"(rc = 'kern-success)[�]

When right = 'receive, a port is created and a receive right is

established.

Mach-Port-Allocate-Receive

� 9 p 2 all-entities:

(3(right = 'receive)[�]

; 3"portp (p)[�]

; 3New-Receive-Right (t, p, n))

When right ='port-set, an empty port set is established for the

target task.

Mach-Port-Allocate-Port-Set

� 3(right = 'port-set)[�] ; 3New-Port-Set (t, n)

When right='dead-right, name n becomes a dead name for the

target task. The new dead right has reference count one.

Mach-Port-Allocate-Dead-Right

� 3(right = 'dead-right)[�] ; 3New-Dead-Right (t, n, 1)

An invalid task outcome results when the target task argument is

discovered not to be a task. The invalid value outcome results when

the right argument has a bad value.

Mach-Port-Allocate-Invalid-Task

� 3(: taskp (t))[�] ; 3"(rc = 'kern-invalid-task)[�]

Mach-Port-Allocate-Invalid-Value

� 3(right 62 f'receive, 'port-set, 'dead-nameg)[�]

; 3"(rc = 'kern-invalid-value)[�]

30

We specify nothing about the computation in the case of the no

space and resource-shortage outcomes, other than the setting of the

return code.

Mach-Port-Allocate-No-Space � 3"(rc = 'kern-no-space)[�]

Mach-Port-Allocate-Resource-Shortage

� 3"(rc = 'kern-resource-shortage)[�]

Port Interface 31

3.2 mach port allocate name

DESCRIPTION

Create a new right in the target task: either a receive right, an empty

port set, or a dead name. The new local name is chosen by the user,

not picked by the kernel.

PARAMETERS

t. The target task.

right. A ag indicating which right is requested.

n. The name the caller wishes to be used for the new right.

OUTCOMES

Mach-Port-Allocate-Namep

� Mach-Port-Allocate-Success

_ Mach-Port-Allocate-Invalid-Task

_ Mach-Port-Allocate-Invalid-Value

_ Mach-Port-Allocate-Name-Exists

_ Mach-Port-Allocate-No-Space

_ Mach-Port-Allocate-Resource-Shortage

SPECIFICATION

The speci�cation for mach port allocate name is almost identical to

the one for mach port allocate. The only di�erence is that the name

parameter in mach port allocate name is an input, and so there exists

an additional return code indicating that the name is already in use.

An name exists outcome results when name is already in use within

the target task.

Mach-Port-Allocate-Name-Exists

� 3local-namep (t, n)[�] ; 3"(rc = 'kern-name-exists)[�]

32

3.3 mach port deallocate

DESCRIPTION

Decrement the reference count on a send right, send-once right, or dead

name. If the reference count becomes zero, remove the right.

PARAMETERS

t. The target task.

n. The name of the right.

OUTCOMES

There are four possible outcomes: success, invalid task, invalid name,

and invalid right.

Mach-Port-Deallocatep

� Mach-Port-Deallocate-Success

_ Mach-Port-Deallocate-Invalid-Task

_ Mach-Port-Deallocate-Invalid-Name

_ Mach-Port-Deallocate-Invalid-Right

SPECIFICATION

On a successful outcome, the target task is con�rmed to be a task and

the reference count for a send right, send-once right, or dead right is

decremented by 1. In a legal kernel state, a name can represent at most

one of a send, send-once or dead right. Section 7.2.2 contains detailed

speci�cations for decrementing rights.

Mach-Port-Deallocate-Success

� 3taskp (t)[�]

; Deallocate-Send-Right (t, n, 1)

_ Remove-Send-Once-Right (t, n)

_ Deallocate-Dead-Right (t, n, 1)

; 3"(rc = 'kern-success)[�]

Port Interface 33

An invalid task outcome results when the target task argument is

discovered not to be a task. The invalid name outcome results when

name n is not a local name in the target task. The invalid right outcome

results when name n is a local name in the target task, but is not a

send right, send-once right, or dead right.

Mach-Port-Deallocate-Invalid-Task

� 3(: taskp (t))[�] ; 3"(rc = 'kern-invalid-task)[�]

Mach-Port-Deallocate-Invalid-Name

� 3(taskp (t) ^ : local-namep (t, n))[�]

; 3"(rc = 'kern-invalid-name)[�]

Mach-Port-Deallocate-Invalid-Right

� 3(: (s-right (t, n) _ so-right (t, n) _ dead-right-namep (t, n)))[�]

; 3"(rc = 'kern-invalid-right)[�]

34

3.4 mach port destroy

DESCRIPTION

Remove a local name from a task's port name space.

PARAMETERS

t. The target task.

n. The local name to be removed.

OUTCOMES

There are three possible outcomes: success, invalid task, and invalid

name.

Mach-Port-Destroyp

� Mach-Port-Destroy-Success

_ Mach-Port-Destroy-Invalid-Task

_ Mach-Port-Destroy-Invalid-Name

SPECIFICATION

On a successful outcome, the target task is con�rmed to be a task and

the local name is destroyed1. If the name denotes a receive right, the

port associated with the name is terminated. For a discussion of the

recursive nature of entity destruction in Mach, see Section 7.4.1.

Mach-Port-Destroy-Success

� taskp (t)[�]

; Mach-Port-Destroy-Port-Right

_ Mach-Port-Destroy-Port-Set

_ Mach-Port-Destroy-Dead-Right

; 3"(rc = 'kern-success)[�]

1If the right is a send right but not a receive right, we may send a no-more-

senders noti�cation. If it is a send-once right, we send a send-once noti�cation. We

do not model this activity.

Port Interface 35

Mach-Port-Destroy-Port-Right

� 3port-right-namep (t, n)[�]

; 3(r-right (t, n)[�] ! Terminate-Port (named-port (t, n)))

; 3#local-namep (t, n)[�]

Mach-Port-Destroy-Port-Set

� 3port-set-namep (t, n)[�] ; 3#local-namep (t, n)[�]

Mach-Port-Destroy-Dead-Right

� 3dead-right-namep (t, n)[�] ; 3#local-namep (t, n)[�]

An invalid task outcome results when the target task argument is

discovered not to be a task. The invalid name outcome results when

name n is not a local name in the target task.

Mach-Port-Destroy-Invalid-Task

� 3(: taskp (t))[�] ; 3"(rc = 'kern-invalid-task)[�]

Mach-Port-Destroy-Invalid-Name

� 3(taskp (t) ^ : local-namep (t, n))[�]

; 3"(rc = 'kern-invalid-name)[�]

36

3.5 mach port extract right

DESCRIPTION

Transfer a port right. The e�ect is equivalent to forcing the target task

to send a port right to the calling task.

PARAMETERS

� ct. The invoking (current) task. This argument is implicit in the

implementation.

� t. The target task.

� n1. The name of interest in t's local name space.

� instr. The method for extracting the right from the target task,

one of f'make, 'copy, 'moveg.

� r. The type of right to be extracted, one of f'send, 'receive,

'send-onceg. In the implementation, instr and r are encoded in

a single argument dtype.

� n2. [out] The new local name in ct's local name space.

OUTCOMES

The possible outcomes are success, invalid task, invalid name, invalid

value, and invalid right.

Mach-Port-Extract-Rightp

� Mach-Port-Extract-Right-Success

_ Mach-Port-Extract-Right-Invalid-Task

_ Mach-Port-Extract-Right-Invalid-Name

_ Mach-Port-Extract-Right-Invalid-Value

_ Mach-Port-Extract-Right-Invalid-Right

Port Interface 37

SPECIFICATION

A successful outcome follows the semantics of a send of this right fol-

lowed by a receive.

Mach-Port-Extract-Right-Success

� 9 p 2 all-entities:

(3Extract-Port-Right (t, n1, instr, r, p)

; Insert-Port-Right (ct, p, n2, r))

_ (3Extract-Dead-Right (t, n1, instr, r)

; "(n2 = deadname)[�])

; 3"(rc = 'kern-success)[�]

An invalid task outcome results when the target task is not a task.

The invalid name outcome results when name n is not a local name

in the target task. The outcome invalid value results when the instr

and r arguments are not a legal combination, and the invalid right

outcome results when the arguments name, instr, and r are not a

legal combination.

Mach-Port-Extract-Right-Invalid-Task

� 3(: taskp (t))[�] ; 3"(rc = 'kern-invalid-task)[�]

Mach-Port-Extract-Right-Invalid-Name

� 3(taskp (t)[�] ^ (: local-namep (t, n1))[�])

; 3"(rc = 'kern-invalid-name)[�]

Mach-Port-Extract-Right-Invalid-Value

� 3: Legal-Instr-Right (instr, r)

; 3"(rc = 'kern-invalid-value)[�]

Mach-Port-Extract-Right-Invalid-Right

� 3Legal-Instr-Right (instr, r)

; 3: Legal-Name-Instr-Right-Deadok (t, n1, instr, r)

; 3"(rc = 'kern-invalid-right)[�]

38

3.6 mach port get refs

DESCRIPTION

Look up the reference count for a local name. If the name is a local

name but not of the speci�ed type, the returned count is zero.

PARAMETERS

� t. The target task.

� n. A local name in t.

� type. The type of right of interest, one of 'send, 'receive,

'send-once, 'port-set, or 'dead-name.

� i. [out] The returned count.

OUTCOMES

The possible outcomes are success, invalid task, invalid name, and in-

valid right.

Mach-Port-Get-Refsp

� Mach-Port-Get-Refs-Success

_ Mach-Port-Get-Refs-Invalid-Task

_ Mach-Port-Get-Refs-Invalid-Name

_ Mach-Port-Get-Refs-Invalid-Right

SPECIFICATION

The success outcome occurs when n is a local name in t, and type is

one of the expected types. If the name n is not of the expected type,

the returned i is zero. For 'send-once, 'receive, or 'port-set, the

returned i is always zero or one. A send right coalesces with a receive

right for the same port. The send right reference is adjusted if there is

also a receive right.

Port Interface 39

Mach-Port-Get-Refs-Success

� ((type = 'send)[�] ^ Mach-Port-Get-Send-Refs

_ (type = 'receive)[�] ^ Mach-Port-Get-Receive-Refs

_ (type = 'send-once)[�]

^ Mach-Port-Get-Send-Once-Refs

_ (type = 'port-set)[�] ^ Mach-Port-Get-Port-Set-Refs

_ (type = 'dead-name)[�]

^ Mach-Port-Get-Dead-Name-Refs)

^ 3"(rc = 'kern-success)[�]

Mach-Port-Get-Send-Refs

� 3(s-right (t, n)[�]

^ (: r-right (t, n))[�]

^ 3"(i = port-right-refcount (t, n))[�])

_ 3(s-right (t, n)[�]

^ r-right (t, n)[�]

^ 3"(i = port-right-refcount (t, n) � 1)[�])

_ 3((: s-right (t, n))[�] ^ 3"(i = 0)[�])

Mach-Port-Get-Receive-Refs

� 3(r-right (t, n)[�] ^ 3"(i = 1)[�]

_ (: r-right (t, n))[�] ^ 3"(i = 0)[�])

Mach-Port-Get-Send-Once-Refs

� 3(so-right (t, n)[�] ^ 3"(i = 1)[�]

_ (: so-right (t, n))[�] ^ 3"(i = 0)[�])

Mach-Port-Get-Port-Set-Refs

� 3(port-set-namep (t, n)[�] ^ 3"(i = 1)[�]

_ (: port-set-namep (t, n))[�] ^ 3"(i = 0)[�])

Mach-Port-Get-Dead-Name-Refs

� 3(dead-right-rel (t, n, i)[�]

_ (: dead-right-namep (t, n))[�] ^ 3"(i = 0)[�])

An invalid task outcome results when the target task is not a task.

The invalid name outcome results when name n is not a local name

in the target task. The invalid right outcome results when the type

argument is not a legal value.

40

Mach-Port-Get-Refs-Invalid-Task

� 3(: taskp (t))[�] ; 3"(rc = 'kern-invalid-task)[�]

Mach-Port-Get-Refs-Invalid-Name

� 3(taskp (t) ^ : local-namep (t, n))[�]

; 3"(rc = 'kern-invalid-name)[�]

Mach-Port-Get-Refs-Invalid-Right

� 3(type 62 f'send, 'receive, 'send-once, 'port-set,

'dead-nameg)[�]

; 3"(rc = 'kern-invalid-right)[�]

Port Interface 41

3.7 mach port get set status

DESCRIPTION

Return the members of a port set, found at some time during the

computation. This call returns the target task's names for the receive

rights, not the calling task's. There is no guarantee that this set is

accurate upon return to the calling task.

PARAMETERS

� t. The target task.

� n. The local name of a port set.

� N. [out] The returned list of names2.

OUTCOMES

The possible outcomes are success, invalid task, invalid name, invalid

right, and resource shortage.

Mach-Port-Get-Set-Statusp

� Mach-Port-Get-Set-Status-Success

_ Mach-Port-Get-Set-Status-Invalid-Task

_ Mach-Port-Get-Set-Status-Invalid-Name

_ Mach-Port-Get-Set-Status-Invalid-Right

_ Mach-Port-Get-Set-Status-Resource-Shortage

SPECIFICATION

The success outcome occurs when n is the name of a port set in t. The

returned list N is the list of names in the port set.

Mach-Port-Get-Set-Status-Success

� 3port-set-rel (t, n, N)[�] ; 3"(rc = 'kern-success)[�]

2In the implementation, the list N is returned in an out-of-line memory block.

42

An invalid task outcome results when the target task is not a task.

The invalid name outcome results when name n is not a local name

in the target task. The invalid right outcome results when the type

argument is a local name but is not a port set. We say nothing about

a resource shortage.

Mach-Port-Get-Set-Status-Invalid-Task

� 3(: taskp (t))[�] ; 3"(rc = 'kern-invalid-task)[�]

Mach-Port-Get-Set-Status-Invalid-Name

� 3(taskp (t) ^ : local-namep (t, n))[�]

; 3"(rc = 'kern-invalid-name)[�]

Mach-Port-Get-Set-Status-Invalid-Right

� 3(local-namep (t, n)[�] ^ (: port-set-namep (t, n))[�])

; 3"(rc = 'kern-invalid-right)[�]

Mach-Port-Get-Set-Status-Resource-Shortage

� 3"(rc = 'kern-resource-shortage)[�]

Port Interface 43

3.8 mach port insert right

DESCRIPTION

Extract a port right from the calling task and insert it into the target

task. The result is almost equivalent to the target task receiving a mes-

sage containing the transit right from the calling task { the di�erence

is that the calling task can choose the new name for the target task.

Flag arguments tells the type of right to be constructed and the side

e�ect on the calling task.

PARAMETERS

� t. The target task.

� n2. The new local name to be inserted into t.

� ct. The invoking (current) task. In the implementation, this

argument is implicit.

� n1. A local name in ct's name space.

� instr. An instruction for disposition of n1, one of 'move, 'copy,

or 'make.

� r. The type of right desired for n2, either 'send, 'receive, or

'send-once. In the implementation, instr and r are encoded in

a single argument right type.

OUTCOMES

The possible outcomes are: success, invalid task, invalid value, name

exists, invalid capability, urefs overow, right exists, resource shortage3.

We say nothing about the latter.

The kernel service mach port insert right operates in two distinct

phases. First, the right is extracted from the calling task. (This phase

3The Mach 3.0 code and the OSF documentation [Loe91] seem to disagree on

the exact meanings of the error return codes. We model the code.

44

is implemented by the MIG interface.) If this phase is successful, the

right is inserted into the target task. If the second phase fails, the �rst

is not undone.

Mach-Port-Insert-Rightp

� Mach-Port-Insert-Right-Success

_ Mach-Port-Insert-Right-Invalid-Task

_ Mach-Port-Insert-Right-Invalid-Value

_ Mach-Port-Insert-Right-Name-Exists

_ Mach-Port-Insert-Right-Invalid-Capability

_ Mach-Port-Insert-Right-Urefs-Overow

_ Mach-Port-Insert-Right-Right-Exists

_ Mach-Port-Insert-Right-Resource-Shortage

SPECIFICATION

The success outcome results when the right is extracted from the calling

task and inserted by the given name into the target task. The sematics

follow closely those of a send followed by a receive.

Mach-Port-Insert-Right-Success

� 9 p 2 all-entities:

(Extract-Port-Right (ct, n1, instr, r, p)

; Insert-Port-Right (t, p, n2, r)

; 3"(rc = 'kern-success)[�])

The �rst set of error outcomes are returned before the name is

extracted from the calling task's local name space. An invalid task

outcome results when the target task is not a task. The invalid value

outcome results when name n is nullname or deadname. The invalid

capability outcome results when the calling task's arguments n1, instr,

and r do not make a legal combination. (Unlike explicitly sending a

right, the name n1 cannot designate a dead right.)

The second set of error outcomes are returned after the name is

extracted from the calling task's local name space. The urefs overow

outcome results when incrementing the reference count for an existing

a send right exceeds the maximum. The name exists outcome results

Port Interface 45

when n2 is already in use in t, and the new right cannot be coalesced.

The right exists outcome results when some other name in t already

has the right.

Mach-Port-Insert-Right-Invalid-Task

� 3(: taskp (t))[�] ; 3"(rc = 'kern-invalid-task)[�]

Mach-Port-Insert-Right-Invalid-Value

� 3((n2 = nullname)[�]

_ (n2 = deadname)[�]

_ : Legal-Instr-Right (instr, r))

; 3"(rc = 'kern-invalid-value)[�]

Mach-Port-Insert-Right-Invalid-Capability

� 3: Legal-Name-Instr-Right (ct, n1, instr, r)

; 3"(rc = 'kern-invalid-capability)[�]

Mach-Port-Insert-Right-Urefs-Overow

� 9 p 2 all-entities:

(3Extract-Port-Right (ct, n1, instr, r, p)

; s-right (t, n2)[�]

^ (port-right-refcount (t, n2) = max-refcount)[�])

; 3"(rc = 'kern-urefs-overflow)[�]

Mach-Port-Insert-Right-Name-Exists

� 9 p 2 all-entities:

(3Extract-Port-Right (ct, n1, instr, r, p)

; Mach-Port-Insert-Right-Send-Once-Name-Exists

_ Mach-Port-Insert-Right-Sr-Name-Exists (p)

; 3"(rc = 'kern-name-exists)[�])

Mach-Port-Insert-Right-Send-Once-Name-Exists

� (r = 'send-once)[�] ; 3local-namep (t, n2)[�]

Mach-Port-Insert-Right-Sr-Name-Exists (p)

� (r 2 f'send, 'receiveg)[�]

; 3(local-namep (t, n2)[�]

^ : (port-right-namep (t, n2)[�]

^ (named-port (t, n2) = p)[�]

^ (port-rights (t, n2)

� f'send, 'receiveg)[�]))

46

Mach-Port-Insert-Right-Right-Exists

� 9 p 2 all-entities:

(Extract-Port-Right (ct, n1, instr, r, p)

; 3(r 2 f'send, 'receiveg)[�]

; 9 n 2 N :

(3(port-right-namep (t, n)[�]

^ (named-port (t, n) = p)[�]

^ (port-rights (t, n) � f'send, 'receiveg)[�]))

; 3"(rc = 'kern-right-exists)[�])

Mach-Port-Insert-Right-Resource-Shortage

� 3"(rc = 'kern-resource-shortage)[�]

Port Interface 47

3.9 mach port mod refs

DESCRIPTION

Alter the reference count for a right by a given delta. If the count

becomes zero, deallocate the right.

PARAMETERS

� t. The target task.

� n. The local name in t's local name space which is to be a�ected.

� type. The right type for n which is to be modi�ed, one of 'send,

'receive, 'send-once, 'port-set, or 'dead-name.

� decr. A boolean ag which tells whether n's reference count

should be decremented or incremented.

� Æ. The positive integer amount by which n's reference count is to

be modi�ed. In the implementation, Æ can be positive or negative,

and there is no decr ag.

OUTCOMES

The possible outcomes are success, invalid task, invalid name, invalid

right, invalid value, and urefs overow.

Mach-Port-Mod-Refsp

� Mach-Port-Mod-Refs-Success

_ Mach-Port-Mod-Refs-Invalid-Task

_ Mach-Port-Mod-Refs-Invalid-Name

_ Mach-Port-Mod-Refs-Invalid-Right

_ Mach-Port-Mod-Refs-Invalid-Value

_ Mach-Port-Mod-Refs-Urefs-Overow

48

SPECIFICATION

The success outcome occurs when n is a local name in t of the type

speci�ed by type. The reference count is incremented or decremented

according to type, decr, and Æ. The low-level speci�cations for modi-

fying rights appear in Section 7.2.

Mach-Port-Mod-Refs-Success

� (3(Æ = 0)[�] ; Mach-Port-Mod-Refs-Checks)

_ (decr[�] ; (Æ 6= 0)[�] ; Mach-Port-Mod-Refs-Decrement)

_ ((: decr)[�]

; (Æ 6= 0)[�]

; Mach-Port-Mod-Refs-Increment)

; 3"(rc = 'kern-success)[�]

If Æ is zero, the preconditions are checked but there is no transition.

Mach-Port-Mod-Refs-Checks

� ((type = 'send)[�] ; 3s-right (t, n)[�])

_ ((type = 'receive)[�] ; 3r-right (t, n)[�])

_ ((type = 'send-once)[�] ; 3so-right (t, n)[�])

_ ((type = 'port-set)[�] ; 3port-set-namep (t, n)[�])

_ ((type = 'dead-name)[�] ; 3dead-right-namep (t, n)[�])

Only send rights or dead rights may have their reference counts

incremented. The new value must be less than or equal to the maximum

allowed reference count.

Mach-Port-Mod-Refs-Increment

� ((type = 'send)[�]

; 9 p 2 all-entities: (3Coalesce-Send-Right (t, p, n, Æ)))

_ ((type = 'dead-name)[�] ; 3Coalesce-Dead-Right (t, n, Æ))

If a reference count is decremented to zero, the right is deleted.

Send rights and dead rights can have reference counts greater than or

equal to one. For this kernel call, receive rights, send-once rights, and

port sets are considered to have a reference count of exactly one.

When a receive right is deleted, the port is terminated.

Port Interface 49

Mach-Port-Mod-Refs-Decrement

� (3(type = 'send)[�] ; 3Mach-Port-Mod-Refs-Decrement-Sendp)

_ (3(type = 'receive)[�]

; 3Mach-Port-Mod-Refs-Decrement-Receivep)

_ (3(type = 'send-once)[�]

; 3Mach-Port-Mod-Refs-Decrement-Send-Oncep)

_ (3(type = 'port-set)[�]

; 3Mach-Port-Mod-Refs-Decrement-Port-Setp)

_ (3(type = 'dead-name)[�]

; 3Mach-Port-Mod-Refs-Decrement-Dead-Namep)

Mach-Port-Mod-Refs-Decrement-Sendp � Deallocate-Send-Right (t, n, Æ)

Mach-Port-Mod-Refs-Decrement-Receivep

� 9 p 2 entities:

(3(Æ = 1)[�]

; 3(r-right (t, n)[�] ^ (named-port (t, n) = p)[�])

; Deallocate-Receive-Right (t, n)

; Terminate-Port (p))

Mach-Port-Mod-Refs-Decrement-Send-Oncep

� 3(Æ = 1)[�] ; 3Remove-Send-Once-Right (t, n)

Mach-Port-Mod-Refs-Decrement-Dead-Namep � Deallocate-Dead-Right (t, n, Æ)

Mach-Port-Mod-Refs-Decrement-Port-Setp

� 3(Æ = 1)[�] ; 3Remove-Port-Set-Name (t, n)

An invalid task outcome results when the target task is not a task.

The invalid name outcome results when name n is not a local name

in the target task. The invalid right outcome results when n is a local

name in t, but not the expected type of right.

The invalid value outcome results when type is not a legal value,

or when Æ is out of the range of the reference count of n. For type

2f'receive, 'send-once, 'port-setg, one is allowed to either supply

Æ =0 or decrement by one. For 'send-once or 'dead-name, one cannot

decrement a reference count below zero.

The urefs overow outcome results when incrementing the reference

count by the designated Æ would be larger than the allowed maximum.

50

Mach-Port-Mod-Refs-Invalid-Task

� 3(: taskp (t))[�] ; 3"(rc = 'kern-invalid-task)[�]

Mach-Port-Mod-Refs-Invalid-Name

� 3(: local-namep (t, n))[�] ; 3"(rc = 'kern-invalid-name)[�]

Mach-Port-Mod-Refs-Invalid-Right

� (3(type = 'send)[�] ; (: s-right (t, n))[�])

_ (3(type = 'receive)[�] ; (: r-right (t, n))[�])

_ (3(type = 'send-once)[�] ; (: so-right (t, n))[�])

_ (3(type = 'port-set)[�]

; (: port-set-namep (t, n))[�])

_ (3(type = 'dead-name)[�]

; (: dead-right-namep (t, n))[�])

; 3"(rc = 'kern-invalid-right)[�]

Mach-Port-Mod-Refs-Invalid-Value

� 3(type 62 f'send, 'receive, 'send-once, 'port-set,

'dead-nameg)[�]

_ Mach-Port-Mod-Refs-Invalid-Send-Value

_ Mach-Port-Mod-Refs-Invalid-Send-Receive-Value

_ Mach-Port-Mod-Refs-Invalid-Receive-Value

_ Mach-Port-Mod-Refs-Invalid-Send-Once-Value

_ Mach-Port-Mod-Refs-Invalid-Dead-Name-Value

_ Mach-Port-Mod-Refs-Invalid-Port-Set-Value

; 3"(rc = 'kern-invalid-value)[�]

Mach-Port-Mod-Refs-Invalid-Send-Value

� 3((type = 'send)[�] ^ decr[�])

; 3(s-right (t, n)[�]

^ (: r-right (t, n))[�]

^ (port-right-refcount (t, n) < Æ)[�])

Mach-Port-Mod-Refs-Invalid-Send-Receive-Value

� 3((type = 'send)[�] ^ decr[�])

; 3(s-right (t, n)[�]

^ r-right (t, n)[�]

^ (port-right-refcount (t, n) � 1 < Æ)[�])

Port Interface 51

Mach-Port-Mod-Refs-Invalid-Receive-Value

� 3((type = 'receive)[�]

^ : (Æ = 0)[�]

^ ((: decr)[�] _ (Æ 6= 1)[�]))

Mach-Port-Mod-Refs-Invalid-Send-Once-Value

� 3((type = 'send-once)[�]

^ : (Æ = 0)[�]

^ ((: decr)[�] _ (Æ 6= 1)[�]))

Mach-Port-Mod-Refs-Invalid-Dead-Name-Value

� (3(type = 'dead-name)[�]

; 3decr[�]

; 9 1 � i < max-refcount:

(3dead-right-rel (t, n, i)[�] ; 3(i < Æ)[�]))

Mach-Port-Mod-Refs-Invalid-Port-Set-Value

� 3((type = 'port-set)[�]

^ : (Æ = 0)[�]

^ ((: decr)[�] _ (Æ 6= 1)[�]))

Mach-Port-Mod-Refs-Urefs-Overow

� (3(Æ > 0 ^ (type = 'send))[�]

; Mach-Port-Mod-Refs-Overow-Sendp)

_ (3(Æ > 0 ^ (type = 'dead-name))[�]

; Mach-Port-Mod-Refs-Overow-Dead-Namep)

; 3"(rc = 'kern-urefs-overflow)[�]

Mach-Port-Mod-Refs-Overow-Sendp

� 3(s-right (t, n)[�]

^ (: r-right (t, n))[�]

^ (port-right-refcount (t, n) + Æ > max-refcount)[�])

_ s-right (t, n)[�]

^ r-right (t, n)[�]

^ ((port-right-refcount (t, n) � 1) + Æ > max-refcount)[�]

Mach-Port-Mod-Refs-Overow-Dead-Namep

� 9 1 � i < max-refcount:

(3(dead-right-rel (t, n, i)[�] ^ (i + Æ > max-refcount)[�]))

52

3.10 mach port move member

DESCRIPTION

Move a receive right into or out of a port set.

PARAMETERS

� t. The target task.

� n1. t's local name for a receive right.

� n2. Either t's local name for a port set, or nullname.

OUTCOMES

The possible outcomes are success, invalid task, invalid name, invalid

right, invalid value, and not in set.

Mach-Port-Move-Memberp

� Mach-Port-Move-Member-Success

_ Mach-Port-Move-Member-Invalid-Task

_ Mach-Port-Move-Member-Invalid-Name

_ Mach-Port-Move-Member-Invalid-Right

_ Mach-Port-Move-Member-Not-In-Setp

SPECIFICATION

On a successful outcome, the target task is con�rmed to be a task and

the receive right is moved either into or out of its port set, as indicated

by the n2 argument.

Mach-Port-Move-Member-Success

� 3r-right (t, n1)[�]

; (3(n2 = nullname)[�]

; Mach-Port-Move-Member-Out-Of)

_ (3(n2 6= nullname)[�] ; Mach-Port-Move-Member-Into)

; 3"(rc = 'kern-success)[�]

Port Interface 53

Mach-Port-Move-Member-Out-Of

� 3in-port-set (t, n1)[�] ; 3: in-port-set (t, n1)[�]

Mach-Port-Move-Member-Into

� 3: in-port-set (t, n1)[�]

; 3port-set-namep (t, n2)[�]

; 3(port-set-namep (t, n2)[�]

^ (n1 2 port-set (t, n2))[�])

An invalid task outcome results when the target task is not a task.

The invalid name outcome results when name n is not a local name

in the target task. The invalid right outcome results when n is a local

name in t, but not the expected type of right. The not in set outcome

results when we intend to remove n1 from its port set, but it is not a

member of a port set.

Mach-Port-Move-Member-Invalid-Task

� 3(: taskp (t))[�] ; 3"(rc = 'kern-invalid-task)[�]

Mach-Port-Move-Member-Invalid-Name

� 3taskp (t)[�]

; 3(: local-namep (t, n1))[�]

_ 3(n2 6= nullname ^ : local-namep (t, n2))[�]

; 3"(rc = 'kern-invalid-name)[�]

Mach-Port-Move-Member-Invalid-Right

� 3(local-namep (t, n1) ^ : r-right (t, n1))[�]

_ 3((n2 6= nullname)[�]

^ local-namep (t, n2)[�]

^ (: port-set-namep (t, n2))[�])

; 3"(rc = 'kern-invalid-right)[�]

Mach-Port-Move-Member-Not-In-Setp

� 3(n2 = nullname)[�]

; 3(r-right (t, n1)[�] ^ : in-port-set (t, n1)[�])

; 3"(rc = 'kern-not-in-set)[�]

54

3.11 mach port names

DESCRIPTION

Return information about a task's local name space.

PARAMETERS

� t. The target task.

� names. [out] A snapshot of all local names in t's local name

space.

� types. [out] The types of the elements of names.

OUTCOMES

The possible outcomes are success, invalid task, and resource shortage.

Mach-Port-Namesp

� Mach-Port-Names-Success

_ Mach-Port-Names-Invalid-Task

_ Mach-Port-Names-Resource-Shortage

SPECIFICATION

On a successful outcome, the target task is con�rmed to be a task and

names and types contain a snapshot of t's name space. The names

are returned in no particular order.

The type information for each name is a set containing elements

from the following set:

'send: The name denotes a send right.

'receive: The name denotes a receive right.

'send-once: The name denotes a send-once right.

'port-set: The name denotes a port set.

Port Interface 55

'dead-name: The name is a dead name.

'dnrequest: A dead-name request has been registered for the right.

Mach-Port-Names-Success

� 38 n 2 N :

(local-namep (t, n)[�]

! 9 0 � i < jN j:

(3"(n = namesi)[�]

^ (r-right (t, n)[�] ! 3"'receive 2 typesi [�])

^ (s-right (t, n)[�] ! 3"'send 2 typesi [�])

^ (so-right (t, n)[�]

! 3"'send-once 2 typesi [�])

^ (dead-right-namep (t, n)[�]

! 3"'dead-name 2 typesi [�])

^ (exists-dn-noti�cation-port (t, n)[�]

! 3"'dnrequest 2 typesi [�])))

; 3"(rc = 'kern-success)[�]

An invalid task outcome results when the target task is not a task.

Mach-Port-Names-Invalid-Task

� 3(: taskp (t))[�] ; 3"(rc = 'kern-invalid-task)[�]

Mach-Port-Names-Resource-Shortage

� 3"(rc = 'kern-resource-shortage)[�]

56

3.12 mach port rename

DESCRIPTION

Change a local port name.

PARAMETERS

� t. The target task.

� n1. The local name in t which is to be changed.

� n2. The new name.

OUTCOMES

The possible outcomes are success, invalid task, invalid right, invalid

name, invalid value, invalid right, name exists, and resource shortage.

Mach-Port-Renamep

� Mach-Port-Rename-Success

_ Mach-Port-Rename-Invalid-Task

_ Mach-Port-Rename-Invalid-Name

_ Mach-Port-Rename-Invalid-Value

_ Mach-Port-Rename-Name-Exists

_ Mach-Port-Rename-Resource-Shortage

SPECIFICATION

On a successful outcome, the target task is con�rmed to be a task and

the rename is accomplished.

Mach-Port-Rename-Success

� 3(((n2 2 N) ^ n2 6= nullname)[�]

^ taskp (t)[�]

^ (Mach-Port-Rename-Port-Rightp

_ Mach-Port-Rename-Port-Set-Namep

_ Mach-Port-Rename-Dead-Namep))

; 3"(rc = 'kern-success)[�]

Port Interface 57

Mach-Port-Rename-Port-Rightp

� 9 p 2 entities, R 2 all-rsets, 1 � i < max-refcount:

(3port-right-rel (t, n1, p, R, i)[�]

; 3" : local-namep (t, n1)

^ port-right-rel (t, n2, p, R, i)[�])

Mach-Port-Rename-Port-Set-Namep

� 9 N 2 all-nsets:

(3port-set-rel (t, n1, N)[�]

; 3": local-namep (t, n1) ^ port-set-rel (t, n2, N)[�])

Mach-Port-Rename-Dead-Namep

� 9 0 � i < max-refcount:

(3dead-right-rel (t, n1, i)[�]

; 3" : local-namep (t, n1)

^ dead-right-rel (t, n2, i)[�])

An invalid task outcome results when the target task is not a task.

The invalid name outcome results when name n1 is not a local name

in the target task. The invalid value outcome results when n2 is not

a valid name. The name exists outcome results when n2 is already a

local name in t.

Mach-Port-Rename-Invalid-Task

� 3(: taskp (t))[�] ; 3"(rc = 'kern-invalid-task)[�]

Mach-Port-Rename-Invalid-Name

� 3(taskp (t) ^ : local-namep (t, n1))[�]

; 3"(rc = 'kern-invalid-name)[�]

Mach-Port-Rename-Invalid-Value

� 3(: (n2 2 N)

_ (n2 = nullname)

_ (n2 = deadname))[�]

; 3"(rc = 'kern-invalid-value)[�]

Mach-Port-Rename-Name-Exists

� 3local-namep (t, n2)[�] ; 3"(rc = 'kern-name-exists)[�]

Mach-Port-Rename-Resource-Shortage

� 3"(rc = 'kern-resource-shortage)[�]

58

3.13 mach port request noti�cation

DESCRIPTION

Request a noti�cation of a port event.

PARAMETERS

� t. The target task.

� n1. The local name in t's name space for which the noti�cation

should be registered.

� variant. The variant of noti�cation requested, one of 'port-destroyed,

'dead-name, or 'no-senders. Port-destryed noti�cations are not

a part of our speci�cation.

� sync. Some variants use this to overcome race conditions. We

do not model these cases.

� n2. The local name to which the noti�cation will be sent. It can

be nullname to cancel a previous request.

� instr. Instruction for creating a send-once right from n2, either

'make or 'move.

� n3. [out] The previous noti�cation send-once right, if any. We do

not model the e�ects on this argument.

OUTCOMES

The possible outcomes are success, invalid task, invalid value, invalid

name, invalid right, invalid capability, invalid argument, urefs overow,

and resource shortage.

Port Interface 59

Mach-Port-Request-Noti�cationp

� Mach-Port-Request-Noti�cation-Success

_ Mach-Port-Request-Noti�cation-Invalid-Task

_ Mach-Port-Request-Noti�cation-Invalid-Value

_ Mach-Port-Request-Noti�cation-Invalid-Name

_ Mach-Port-Request-Noti�cation-Invalid-Right

_ Mach-Port-Request-Noti�cation-Invalid-Capability

_ Mach-Port-Request-Noti�cation-Invalid-Argumentp

_ Mach-Port-Request-Noti�cation-Urefs-Overow

_ Mach-Port-Request-Noti�cation-Resource-Shortage

SPECIFICATION

On a successful outcome, the target task is con�rmed to be a task and

the appropriate noti�cation is either registered or canceled.

Mach-Port-Request-Noti�cation-Success

� 3(variant = 'port-destroyed)[�]

_ Mach-Port-Request-Noti�cation-Dead-Name

_ Mach-Port-Request-Noti�cation-No-Senders

; 3"(rc = 'success)[�]

For a dead name noti�cation, destruction of the port denoted by

name n1 in task t causes a message containing n1 to be sent to port

p. (When the name of a task's capability on a port is changed (via

mach port rename), the dead-name noti�cation is modi�ed to reect

the new name.)

Mach-Port-Request-Noti�cation-Dead-Name

� 3(variant = 'dead-name)[�]

; Mach-Port-Request-Noti�cation-Dead-Name-Register

_ Mach-Port-Request-Noti�cation-Dead-Name-Cancel

Mach-Port-Request-Noti�cation-Dead-Name-Register

� 8 p 2 all-entities:

(3port-right-namep (t, n1)[�]

; Extract-Port-Right (t, n2, instr, 'send-once, p)

; 3"dn-noti�cation-rel (p, t, n1)[�])

60

Mach-Port-Request-Noti�cation-Dead-Name-Cancel

� 3port-right-namep (t, n1)[�]

; 3(n2 = nullname)[�]

; 3(: exists-dn-noti�cation-port (t, n1))[�]

When '(equal variant 'no-senders), n1 must specify a receive

right. If n2 is not null, and the receive right's make-send count is

greater than or equal to the sync value, and it has no extant send rights,

than an immediate no-senders noti�cation is generated. Otherwise the

noti�cation is generated when the receive right next loses its last extant

send right.

Mach-Port-Request-Noti�cation-No-Senders

� 3(variant = 'no-senders)[�]

; Mach-Port-Request-Noti�cation-No-Senders-Register

_ Mach-Port-Request-Noti�cation-No-Senders-Cancel

Mach-Port-Request-Noti�cation-No-Senders-Register

� 9 p1 2 all-entities, p2 2 all-entities:

(3(r-right (t, n1)[�]

^ (named-port (t, n1) = p1)[�])

; Extract-Port-Right (t, n2, instr, 'send-once, p2)

; 3"ns-noti�cation-rel (p2, p1)[�])

Mach-Port-Request-Noti�cation-No-Senders-Cancel

� 9 p 2 all-entities:

(3(r-right (t, n1)[�]

^ (named-port (t, n1) = p)[�])

; 3(n2 = nullname)[�]

; 3#exists-ns-noti�cation-port (p)[�])

An invalid task outcome results when the target task is not a task.

The invalid value outcome results when variant was not an expected

value. The invalid name outcome results when name n1 is not a local

name in the target task.

The invalid right outcome results when n1 is a local name in t, but

not the expected type of right. The invalid capability outcome results

when n2 was not a valid right. The invalid argument outcome results

Port Interface 61

when n1 denotes a dead name, but sync is zero or n2 =nullname.

The urefs overow outcome results when n1 denotes a dead name, but

generating an immediate dead-name noti�cation would overow the

name's user-reference count.

Mach-Port-Request-Noti�cation-Invalid-Task

� 3(: taskp (t))[�] ; 3"(rc = 'kern-invalid-task)[�]

Mach-Port-Request-Noti�cation-Invalid-Value

� 3(variant 62 f'port-destroyed, 'dead-name, 'no-sendersg)[�]

; 3"(rc = 'kern-invalid-value)[�]

Mach-Port-Request-Noti�cation-Invalid-Name

� 3(: local-namep (t, n1))[�]

; 3"(rc = 'kern-invalid-name)[�]

Mach-Port-Request-Noti�cation-Invalid-Right

� 3(local-namep (t, n1)[�]

^ ((variant = 'port-destroyed)[�]

! (: r-right (t, n1))[�])

^ ((variant = 'dead-name)[�]

! (: s-right (t, n1))[�]

^ (: r-right (t, n1))[�]

^ (: so-right (t, n1))[�])

^ ((variant = 'no-senders)[�]

! (: r-right (t, n1))[�]))

; 3"(rc = 'kern-invalid-right)[�]

Mach-Port-Request-Noti�cation-Invalid-Capability

� 3: Legal-Name-Instr-Right (t, n2, instr, 'send-once)

; 3"(rc = 'kern-invalid-capability)[�]

Mach-Port-Request-Noti�cation-Invalid-Argumentp

� 3dead-right-namep (t, n1)[�]

^ (3(n2 = nullname)[�] _ 3(sync = 0)[�])

; 3"(rc = 'kern-invalid-argument)[�]

Mach-Port-Request-Noti�cation-Urefs-Overow

� 3"(rc = 'kern-urefs-overflow)[�]

62

Mach-Port-Request-Noti�cation-Resource-Shortage

� 3"(rc = 'kern-resource-shortage)[�]

Port Interface 63

3.14 mach port set qlimit

DESCRIPTION

Set the queue limit for a port.

PARAMETERS

� t. The target task.

� n. The name of a receive right in t.

� i. The number of messages which may be queued to this port

without causing the sender to block.

OUTCOMES

The possible outcomes are success, invalid task, invalid name, invalid

right, and invalid value.

Mach-Port-Set-Qlimitp

� Mach-Port-Set-Qlimit-Success

_ Mach-Port-Set-Qlimit-Invalid-Task

_ Mach-Port-Set-Qlimit-Invalid-Name

_ Mach-Port-Set-Qlimit-Invalid-Right

_ Mach-Port-Set-Qlimit-Invalid-Value

SPECIFICATION

On a successful outcome, the target task is con�rmed to be a task and

the new limit is set4. Note that it is not a kernel invariant that the

length of a port's message queue is less than its queue limit. The limit

may be set to less than the current length without causing any change

to the queue5.

4We use the notation 3p[�] (occurs) rather than 3"p[�] (asserted) because it is

legitimate to set the value to the one it currently has.
5If the queue limit is increased, blocked senders may be awakened. We do not

model this behavior explicitly.

64

Mach-Port-Set-Qlimit-Success

� 9 p 2 all-entities:

(3(r-right (t, n) ^ (p = named-port (t, n)))[�]

; 3message-qlimit-rel (p, i)[�]

; 3"(rc = 'kern-success)[�])

An invalid task outcome results when the target task is not a task.

The invalid name outcome results when name n is not a local name

in the target task. The invalid right outcome results when n is a local

name in t, but not a receive right. The invalid value outcome results

when the new queue limit is greater than the maximum allowed.

Mach-Port-Set-Qlimit-Invalid-Task

� 3(: taskp (t))[�] ; 3"(rc = 'kern-invalid-task)[�]

Mach-Port-Set-Qlimit-Invalid-Name

� 3(taskp (t) ^ : local-namep (t, n))[�]

; 3"(rc = 'kern-invalid-name)[�]

Mach-Port-Set-Qlimit-Invalid-Right

� 3(local-namep (t, n) ^ : r-right (t, n))[�]

; 3"(rc = 'kern-invalid-right)[�]

Mach-Port-Set-Qlimit-Invalid-Value

� 3(3(i > max-qlimit)[�]) ; 3"(rc = 'kern-invalid-value)[�]

Port Interface 65

3.15 mach port type

DESCRIPTION

Return information about a local name.

PARAMETERS

� t. The target task.

� n. The local name of interest.

� types. [out] A subset of the set f'send, 'receive, 'send-once,

'port-set, 'dead-nameg.

� ags. [out] A subset of the set f'dnrequest, 'marequest, 'compatg6.

OUTCOMES

The possible outcomes are success, invalid task, and invalid name.

Mach-Port-Typep

� Mach-Port-Type-Success

_ Mach-Port-Type-Invalid-Task

_ Mach-Port-Type-Invalid-Name

SPECIFICATION

On a successful outcome, the target task is con�rmed to be a task and

types and ags contain the information about n.

Mach-Port-Type-Success

� 3(Mach-Port-Port-Name-Typep

_ Mach-Port-Dead-Name-Typep

_ Mach-Port-Port-Set-Typep)

; 3"(rc = 'kern-success)[�]

6The 'marequest ag indicates that a msg-accepted request for the right is pend-

ing. The 'compat ag indicates that this port was created in Mach 2.5 compatibility

mode. We do not model these values.

66

Mach-Port-Port-Name-Typep

� 3(port-right-namep (t, n)[�]

^ (types = port-rights (t, n))[�]

^ (exists-dn-noti�cation-port (t, n) $ 'dnrequest 2 ags)[�])

Mach-Port-Dead-Name-Typep

� 3(dead-right-namep (t, n)[�]

^ (types = f'dead-nameg)[�]

^ (ags = ;)[�])

Mach-Port-Port-Set-Typep

� 3(port-set-namep (t, n)[�]

^ (types = f'port-setg)[�]

^ (ags = ;)[�])

An invalid task outcome results when the target task is not a task.

The invalid name outcome results when name n1 is not a local name

in the target task.

Mach-Port-Type-Invalid-Task

� 3(: taskp (t))[�] ; 3"(rc = 'kern-invalid-task)[�]

Mach-Port-Type-Invalid-Name

� 3(taskp (t) ^ : local-namep (t, n))[�]

; 3"(rc = 'kern-invalid-name)[�]

67

3.16 mach reply port

DESCRIPTION

Create a reply port.

PARAMETERS

� t. The calling task. This is implicit in the implementation.

� n. [out] Either the new local name, or nullname to indicate

failure.

SPECIFICATION

This is an optimized version of mach port allocate, with a di�erent

interface. The task argument and the return code do not appear in the

interface. For the former, the current task is supplied implicitly. When

there is a non-success return, the interface returns nullname.

Mach-Reply-Portp � Mach-Port-Allocate-Receive _ "(n = nullname)[�]

68

Chapter 4

Virtual Memory Interface

69

70

4.1 vm allocate

DESCRIPTION

Allocate a region of virtual memory.

PARAMETERS

� t. The target task.

� va1. A virtual address in t's address space. The kernel truncates

it to a page boundary.

� l. The length of the region of interest. The kernel rounds up to an

even number of pages1. However, as a special case, l = 0 returns

immediately with a successful return code.

� anywhere. Placement indicator. If false, the kernel allocates

the region at the virtual page address containing va1. If true, the

kernel chooses a region wherever space is available.

� va2. [out] The page-aligned virtual address of a region of t's

address space where the memory was allocated. Pages containing

the region from va2 to va2 + l are a�ected.

OUTCOMES

The possible outcomes are success, invalid task, invalid address, and no

space.

Vm-Allocatep

� Vm-Allocate-Success

_ Vm-Allocate-Invalid-Argument

_ Vm-Allocate-Invalid-Address

_ Vm-Allocate-No-Space

1Consider a case where a task allocates ten words for a virtual address one below

a page boundary. Because of the rounding down of va1 and the rounding up of l,

one page will be allocated.

Virtual Memory Interface 71

SPECIFICATION

On a successful outcome, the target task is con�rmed to be a task. A

temporary memory m is allocated2 and mapped into the task's address

space at virtual page address va2. If anywhere, the kernel �nds space

wherever it is available3, otherwise it is at va1's virtual page address.

The contents of the memory for the relevant region are zero-�lled. De-

fault values are provided for inheritance and protection values.

Vm-Allocate-Success

� 3taskp (t)[�]

; 3(l = 0)[�]

_ 3((l > 0)[�]

^ page-aligned (va2)[�]

^ ((: anywhere)[�]

! (va2 = trunc-page (va1))[�])

^ Vm-Allocate-Zero-Mapped-Memoryp)

; 3"(rc = 'kern-success)[�]

2We are ignoring coalescing of memory entities. The implementation optimizes

by coalescing the new memory entity with an adjoining one, if certain criteria are

met. This optimization is visible to the user task via the vm region kernel service.

The implementation chooses to coalesce if

� the previous virtual page address (vpa) is allocated, and

� the memory entity at the previous vpa is temporary, and

� the memory entity at the previous vpa has exactly that one map, and

� the memory entity is not managed. (If the default pager is managing this

memory entity, it is too late to change its size.)

3This is not consistant with vm map, which guarentees that the allocated region

is after the input address va1.

72

Vm-Allocate-Zero-Mapped-Memoryp

� 8 0 � i < l:

(3(: allocated (t, trunc-page (va2 + i)))[�])

; 9 m 2 all-entities:

(3"memoryp (m)[�]

; 3"temporary-rel (m)[�]

^ 38 0 � i < trunc-page (l + pagesize):

("m-wordp (m, trunc-page (i), i , 0)[�])

^ 8 0 � i < trunc-page (l + pagesize):

(3"map-rel (t, m, va2 + trunc-page (i),

trunc-page (i), 'copy, f'read, 'writeg,

f'read, 'write, 'executeg)[�]))

An invalid argument outcome results when the target task is not a

task. The invalid address outcome results when we attempt to explicitly

allocate the region (not anywhere), but the end of the region is past

the end of the address space. The no space outcome results when there

is no room in the target task's address space for the new region.

Vm-Allocate-Invalid-Argument

� 3(: taskp (t))[�] ; 3"(rc = 'kern-invalid-argument)[�]

Vm-Allocate-Invalid-Address

� 3(taskp (t)[�]

^ (: anywhere)[�]

^ (l > 0)[�]

^ (trunc-page (va1)

+ trunc-page (l + pagesize)

> address-space-limit)[�])

; 3"(rc = 'kern-invalid-address)[�]

Vm-Allocate-No-Space

� 3((: anywhere)[�] ^ Vm-Allocate-No-Space-Herep)

_ 3(anywhere[�] ^ Vm-Allocate-No-Space-Anywherep)

; 3"(rc = 'kern-no-space)[�]

Vm-Allocate-No-Space-Herep

� 39 0 � i < l:

allocated (t, trunc-page (trunc-page (va1) + i))[�]

Virtual Memory Interface 73

Vm-Allocate-No-Space-Anywherep

� 3: 9 0 � vpa < (address-space-limit � l):

(page-aligned (vpa)[�]

^ 8 0 � i < l: (: allocated (t, trunc-page (vpa + i)))[�])

74

4.2 vm copy

DESCRIPTION

Copy a region of a task's address space.

PARAMETERS

� t. The target task.

� va1. The source virtual address in t's address space.

� l. The length of the region of interest.

� va2. The destination virtual address in t's address space.

OUTCOMES

The possible outcomes are success, invalid argument, protection failure,

and invalid address.

Vm-Copyp

� Vm-Copy-Success

_ Vm-Copy-Invalid-Argument

_ Vm-Copy-Invalid-Address

_ Vm-Copy-Protection-Failure

SPECIFICATION

On a successful outcome, the target task is con�rmed to be a task, the

source region can be read, and the destination region can be written.

The kernel takes a snapshot of the contents of the source region in a

state and replaces the contents of the destination region with it. The

regions may overlap, and no map relations are changed. The source

address, destination address, or length need not be page-aligned.

Virtual Memory Interface 75

Vm-Copy-Success

� 8 0 � i < l:

(9 (0 � w < wordsize):

(3(('read

2 protection (t, trunc-page (va1 + i)))[�]

^ va-wordp (t, va1 + i , w)[�])

; 3(('write

2 protection (t, trunc-page (va2 + i)))[�]

^ "va-wordp (t, va2 + i , w)[�])))

; "(rc = 'kern-success)[�]

An invalid argument outcome results when the target task is not

a task, or when one of the arguments va1, va2, or l are not page-

aligned4. The invalid address outcome results when there is a virtual

address between va1 and va1 +l, or between va2 and va2 +l, that

is not a valid address. The protection-failure outcome results when the

source region is protected against reading or the destination region is

protected against writing.

Vm-Copy-Invalid-Argument

� 3((: taskp (t))[�]

_ (: page-aligned (va1))[�]

_ (: page-aligned (va2))[�]

_ (: page-aligned (l))[�])

; 3"(rc = 'kern-invalid-argument)[�]

Vm-Copy-Invalid-Address

� 9 0 � i < l:

(3(taskp (t)

^ : allocated (t, trunc-page (va1 + i)))[�]

_ 3(taskp (t)

^ : allocated (t, trunc-page (va2 + i)))[�]

; 3"(rc = 'kern-invalid-address)[�])

4Formerly, the invalid argument outcome would also result when one of va1, va2,

or l was not page-aligned. As of August, 1993, this restriction has been partially

removed from the implementation. Our statement of the speci�cation allows an

implementation to either succeed or fail in this case.

76

Vm-Copy-Protection-Failure

� 9 0 � i < l:

(3(allocated (t, trunc-page (va1 + i))[�]

^ ('read

62 protection (t, trunc-page (va1 + i)))[�])

_ 3(allocated (t, trunc-page (va2 + i))[�]

^ ('write

62 protection (t, trunc-page (va2 + i)))[�])

; 3"(rc = 'kern-protection-failure)[�])

Virtual Memory Interface 77

4.3 vm deallocate

DESCRIPTION

Deallocate a region of virtual memory.

PARAMETERS

� t. The target task.

� va. A virtual address in t's address space.

� l. The length of the region of interest. All pages which contain

data in the region va to va + l are a�ected.

OUTCOMES

The possible outcomes are success, invalid argument, and invalid ad-

dress.

Vm-Deallocatep

� Vm-Deallocate-Success

_ Vm-Deallocate-Invalid-Argument

_ Vm-Deallocate-Invalid-Address

SPECIFICATION

On a successful outcome, the target task is con�rmed to be a task

and all addresses in the region are removed. When the last map for a

memory entity is deallocated, the memory entity is killed.

78

Vm-Deallocate-Success

� 3taskp (t)[�]

; 8 0 � i < l:

(3(allocated (t, va + i)[�]

! 3#allocated (t, va + i)[�]

^ 9 m = mapped-memory (t, trunc-page (va + i)):

((mapping-tasks (m) = ftg)[�]

! Terminate-Memory (m))))

; 3"(rc = 'kern-success)[�]

An invalid argument outcome results when the target task is not

a task. The invalid address outcome results when there is a virtual

address between va and va +l that is not a valid address5.

Vm-Deallocate-Invalid-Argument

� 3(: taskp (t))[�] ; 3"(rc = 'kern-invalid-argument)[�]

Vm-Deallocate-Invalid-Address

� 9 0 � i < l:

(3(taskp (t) ^ : allocated (t, trunc-page (va + i)))[�]

; 3"(rc = 'kern-invalid-address)[�])

5Contrary to [Loe91], the implementation never

returns 'kern-invalid-address. It just skips holes in the region. There was a

series of email messages about this, starting with \VM Kernel Interface Semantics"

from dlb, 27 Jan 92. Rashid and others stated the strong opinion that holes should

be allowed. Our speci�cation allows the implementation to either ignore the holes

or fail.

Virtual Memory Interface 79

4.4 vm inherit

DESCRIPTION

Set the inheritance attribute for a region of virtual memory.

PARAMETERS

� t. The target task.

� va. A virtual address in t's address space.

� l. The length of the region of interest.

� inh. The new inheritance value, one of f'share, 'copy, 'noneg.

OUTCOMES

The possible outcomes are success, invalid argument, and invalid ad-

dress.

Vm-Inheritp

� Vm-Inherit-Success

_ Vm-Inherit-Invalid-Argument

_ Vm-Inherit-Invalid-Address

SPECIFICATION

On a successful outcome, the target task is con�rmed to be a task and

the allocated virtual page addresses in the region are given the speci�ed

inheritance.

Vm-Inherit-Success

� 8 0 � i < l:

(3(allocated (t, trunc-page (va + i))[�]

! 3(allocated (t, trunc-page (va + i))

^ (inheritance (t, trunc-page (va + i)) = inh))[�])

; 3"(rc = 'kern-success)[�])

80

An invalid argument outcome results when either the target task

is not a task, or the new inheritance value is not valid. The invalid

address outcome results when there is a virtual address between va

and va +l that is not allocated6.

Vm-Inherit-Invalid-Argument

� 3(: taskp (t))[�] _ 3(inh 62 I)[�]

; 3"(rc = 'kern-invalid-argument)[�]

Vm-Inherit-Invalid-Address

� 9 0 � i < l:

(3(taskp (t) ^ : allocated (t, trunc-page (va + i)))[�]

; 3"(rc = 'kern-invalid-address)[�])

6The documentation ([Loe91]) says that invalid address is returned if there is a

non-allocated region in the range from va to va +l. The implementation ignores

holes in the region. Our speci�cation allows both behaviors.

Virtual Memory Interface 81

4.5 vm map

DESCRIPTION

Map a memory object into a task's address space.

PARAMETERS

� t. The target task.

� va1. A virtual address in t's address space which is the start of

the region of interest. The kernel truncates to a page boundary.

� l. The length of the region of interest. Enough pages are allocated

to cover l bytes.

� anywhere. Placement indicator. If false, the kernel allocates

the region at the virtual page address containing va. If true, the

kernel chooses a region wherever space is available7.

� n. A local port name representing the memory entity of interest.

� o�set. The o�set into the memory entity to which we wish to

map the address region.

� copy. A boolean ag that indicates that we wish to take a snap-

shot of the memory entity rather than mapping it directly.

� CP. Current protection set for the new region.

� MP. Maximum protection set for the new region.

� inh. Inheritance value for the new region.

� va2. [out] The page-aligned virtual address where the map is

actually assigned.

7The implementation provides an additional argument mask, which provides

alignment restrictions for the starting address.

82

OUTCOMES

The possible outcomes are success, invalid argument, and no space.

Vm-Mapp � Vm-Map-Success _ Vm-Map-Invalid-Argument _ Vm-Map-No-Space

SPECIFICATION

On a successful outcome, the virtual page address in the target task

is chosen, the memory entity and o�set of interest is chosen, then the

range of the memory entity is mapped into the task's address space.

Vm-Map-Success

� 9 m 2 all-entities, 0 � o < memorysize:

(3Vm-Map-Va2-Selectp

^ 3Vm-Map-Memory-Selectp (m, o)

^ 8 0 � i < l:

(3"map-rel (t, m, va2 + trunc-page (i),

o + trunc-page (i), inh, CP, MP)[�])

^ 3"(rc = 'kern-success)[�])

The mapped virtual page address in the target task is chosen ac-

cording to the input parameters t, va1, l, and anywhere
8.

Vm-Map-Va2-Selectp

� page-aligned (va2)[�]

^ (trunc-page (va1) � va2)[�]

^ ((: anywhere)[�]

! (va2 = trunc-page (va1))[�])

^ 8 va2 � va < (va2 + l):

(3(: allocated (t, trunc-page (va)))[�])

The algorithm for determining the memory entity of interest from

the local port name n has a number of cases.

8The treatment of anywhere is not consistent between vm allocate and vm map.

For vm map, the allocated space is guaranteed to be at or after the input value va1.

Virtual Memory Interface 83

� If n 6=nullname and copy is false, then n names a send right

to a port. If the port is an object port for a memory entity,

then it is the one of interest. Otherwise, a new memory entity

is created and the kernel enters into an initialization dialog with

the task which holds the receive right for the port. That task is

the external memory manager for the memory entity. We do not

specify the details of that dialog here.

� If n=nullname, then m is a new, temporary memory which is

zero-�lled.

� If copy is true, then n names a port as for the �rst case. A

snapshot of the region of interest for that port's object memory

is copied into a new, temporary memory.

Vm-Map-Memory-Selectp (m, o)

� Vm-Map-Memory-Select-S-Rightp (m, o)

_ Vm-Map-Memory-Select-Nullnamep (m, o)

_ Vm-Map-Memory-Select-Copyp (m, o)

Vm-Map-Memory-Select-S-Rightp (m, o)

� 9 p 2 all-entities:

((: copy)[�]

^ s-right (t, n)[�]

^ (p = named-port (t, n))[�]

^ 3object-port-rel (m, p)[�]

^ (o = o�set)[�])

Vm-Map-Memory-Select-Nullnamep (m, o)

� (n = nullname)[�]

^ 3"memoryp (m)[�]

^ 3"temporary-rel (m)[�]

^ (o = 0)[�]

84

Vm-Map-Memory-Select-Copyp (m, o)

� 9 p 2 all-entities, m1 2 all-entities:

(copy[�]

^ s-right (t, n)[�]

^ (p = named-port (t, n))[�]

^ 3object-port-rel (m1, p)[�]

^ 3"memoryp (m)[�]

^ 3"temporary-rel (m)[�]

^ (o = 0)[�]

^ 8 0 � i < trunc-page (l + pagesize):

(9 (0 � w < wordsize):

(m-wordp (m1, o�set + trunc-page (i), o�set + i ,

w)[�]

^ 3m-wordp (m, trunc-page (i), 'i, 'w)[�])))

An invalid argument outcome results in a number of cases. Either

� the target task is not a task,

� The current or maximum protections are not in the proper set,

� the current protection is not a subset of the maximum protection,

� the inheritance value is not in the proper set, or

� the local name is a name for a port which is a special port, but

not a memory object port9.

The no space outcome results when there is no room in the target task's

address space for the new region.

9The predicate t(:fnname port-is-special-port) recognizes when its argument is

any of the possible kinds of special ports.

Virtual Memory Interface 85

Vm-Map-Invalid-Argument

� 3(: taskp (t))[�]

_ 3(CP 62 P)[�]

_ 3(CP 62 P)[�]

_ 3(CP 6� MP)[�]

_ 3(inh 62 I)[�]

_ (3port-right-namep (t, n)[�]

; Port-Is-Special-Port (named-port (t, n))

^ : exists-control-memory (named-port (t, n))[�])

; 3"(rc = 'kern-invalid-argument)[�]

Vm-Map-No-Space

� 3((: anywhere)[�] ^ Vm-Map-No-Space-Herep

_ anywhere[�] ^ Vm-Map-No-Space-Anywherep)

; 3"(rc = 'kern-no-space)[�]

Vm-Map-No-Space-Herep

� 39 0 � i < l:

allocated (t, trunc-page (trunc-page (va1) + i))[�]

Vm-Map-No-Space-Anywherep

� 3: 9 0 � vpa < (address-space-limit � l):

(page-aligned (vpa)[�]

^ 8 0 � i < l: (: allocated (t, trunc-page (vpa + i)))[�])

86

4.6 vm protect

DESCRIPTION

Change the protection or maximum protection for a region of a task's

address space.

PARAMETERS

� t. The target task.

� va. A virtual address in t's address space which is the start of

the region of interest.

� l. The length of the region of interest. All pages which contain

data in the region from va to va + l are a�ected.

� set-maximum. If true, the maximum protection is set. If false,

the current protection is set.

� inh. The new inheritance value, a subset of f'read, 'write,

'executeg.

OUTCOMES

The possible outcomes are success, protection failure, invalid argument,

and invalid address.

Vm-Protectp

� Vm-Protect-Success

_ Vm-Protect-Invalid-Argument

_ Vm-Protect-Invalid-Address

_ Vm-Protect-Protection-Failure

SPECIFICATION

On a successful outcome, the target task is con�rmed to be a task and

the maximum or current protection is set.

Virtual Memory Interface 87

Vm-Protect-Success

� 3(taskp (t)[�]

^ (set-maximum[�] ! Vm-Protect-Maximump)

^ ((: set-maximum)[�] ! Vm-Protect-Currentp))

; 3"(rc = 'kern-success)[�]

Vm-Protect-Maximump

� 8 0 � i < l:

(3(allocated (t, trunc-page (va + i))[�]

! 9 CP = protection (t, trunc-page (va + i)),

MP = max-protection (t, trunc-page (va + i)):

(3((PR � MP)[�]

^ allocated (t, trunc-page (va + i))[�]

^ (max-protection (t, trunc-page (va + i)) = PR)[�]

^ ((CP 6� PR)[�]

! "(protection (t, trunc-page (va + i)) = PR)[�])))))

Vm-Protect-Currentp

� 8 0 � i < l:

(3(allocated (t, trunc-page (va + i))[�]

! (PR � max-protection (t, trunc-page (va + i)))[�]

^ 3(allocated (t, trunc-page (va + i))[�]

^ (protection (t, trunc-page (va + i)) = PR)[�])))

An invalid argument outcome results when the target task is not

a task. The invalid address outcome results when there is a virtual

address between va and va + l that is not a valid address10. The

protection-failure outcome results when the new protection is greater

than a region's maximum protection.

Vm-Protect-Invalid-Argument

� 3(3(: taskp (t))[�]

_ (PR � f'read, 'write, 'executeg)[�])

; 3"(rc = 'kern-invalid-argument)[�]

10The documentation ([Loe91]) says that invalid address is returned if there is a

non-allocated region in the range from va to va +l. The implementation ignores

holes in the region. Our speci�cation allows both behaviors.

88

Vm-Protect-Invalid-Address

� 9 0 � i < l:

(3(taskp (t) ^ : allocated (t, trunc-page (va + i)))[�]

; 3"(rc = 'kern-invalid-address)[�])

Vm-Protect-Protection-Failure

� 9 0 � i < l:

(3(allocated (t, trunc-page (va + i))

^ PR 6� max-protection (t, trunc-page (va + i)))[�]

; 3"(rc = 'kern-protection-failure)[�])

Virtual Memory Interface 89

4.7 vm read

DESCRIPTION

Read a task's virtual memory. The e�ect of vm read is as if the target

task has mailed the memory segment to the agent task.

PARAMETERS

� ct. The agent (current) task. In the implementation, this argu-

ment is implicit.

� t. The target task.

� va. A virtual address in t's address space which is the start of

the region of interest.

� l. The length of the region of interest. The region read contains

all pages in the range va to va1 + l.

� va2. [out] The virtual page address in ct where the data is placed.

The length if the region is l, rounded up to a page boundary. This

length value is an explicitOUT parameter in the implementation.

OUTCOMES

The possible outcomes are success, invalid argument, invalid address,

protection-failure, and no-space.

Vm-Readp

� Vm-Read-Success

_ Vm-Read-Invalid-Argument

_ Vm-Read-Invalid-Address

_ Vm-Read-Protection-Failure

_ Vm-Read-No-Space

90

SPECIFICATION

On a successful outcome, the address space in the target task t is found

to be allocated, with reading allowed. The data in the region is copied

to a newly-allocated area in ct.

Vm-Read-Success

� 8 0 � i < l:

(9 (0 � w < wordsize):

(3(allocated (t, trunc-page (va1 + i))[�]

^ ('read 2 protection (t, trunc-page (va1 + i)))[�]

^ va-wordp (t, va1 + i , w)[�]

^ page-aligned (va2)[�]

^ 3"allocated (ct,

trunc-page (va2
+ (va1 � trunc-page (va1))

+ i))[�]

^ 3"va-wordp (ct,

va2
+ (va1 � trunc-page (va1))

+ i , w)[�]

^ 3"(rc = 'kern-success)[�])))

An invalid argument outcome results when the target task is not a

task, or if the input va or l are not page-aligned11. The invalid address

outcome results when there is a virtual address between va and va

+l that is not allocated. The protection failure outcome results when a

part of t's region is protected against reading. The no space outcome

results when there is not enough room in ct's address space to place

the data.

Vm-Read-Invalid-Argument

� 3(: taskp (t))[�] ; 3"(rc = 'kern-invalid-argument)[�]

11The documentation ([Loe91]) states that the arguments va and l must be page-

aligned. The implementation does not enforce this restriction. Our speci�cation

allows both behaviors.

Virtual Memory Interface 91

Vm-Read-Invalid-Address

� 9 va1 � va < (va1 + l):

(3(taskp (t) ^ : allocated (t, trunc-page (va)))[�]

; 3"(rc = 'kern-invalid-address)[�])

Vm-Read-Protection-Failure

� 9 va1 � va < (va1 + l):

(3(allocated (t, trunc-page (va))

^ 'read 62 protection (t, trunc-page (va)))[�]

; 3"(rc = 'kern-protection-failure)[�])

Vm-Read-No-Space

� 3: 9 0 � va < address-space-limit:

(8 (0 � i < l):

(: allocated (ct, trunc-page (va + i)))[�])

; 3"(rc = 'kern-no-space)[�]

92

4.8 vm region

DESCRIPTION

Return information about a region of a task's virtual memory.

PARAMETERS

� t. The target task.

� va. [in] A virtual address in t's address space to begin looking

for a region.

� vpa. [out] The beginning of the region found.

� l. [out] The length of the region of interest. The kernel rounds

up to a page boundary.

� CP. [out] Current protection for the region.

� MP. [out] Maximum protection for the region.

� inh. [out] Inheritance value for the region

� shared. [out] Boolean ag, set if the region is shared by another

task.

� n. [out] The task's local name for the name port of the memory

entity associated with this region, if any.

� o. [out] The o�set into the memory entity which is associated

with the beginning of this region.

OUTCOMES

The possible outcomes are success, invalid argument, and no-space.

Vm-Regionp

� Vm-Region-Success _ Vm-Region-Invalid-Argument _ Vm-Region-No-Space

Virtual Memory Interface 93

SPECIFICATION

On a successful outcome, the returned argument vpa is the virtual page

address of the allocated region containing or following va. All virtual

page addresses from vpa to vpa + l have the same characteristics12.

The shared ag tells whether some other child or sibling task has

inherited the region.

Vm-Region-Success

� 3Vm-Region-Within _ 3Vm-Region-Next

; Vm-Region-Outputs

; 3"(rc = 'success)[�]

Vm-Region-Within

� allocated (t, va)[�]

^ page-aligned (vpa)[�]

^ (vpa � va < (vpa + l))[�]

Vm-Region-Next

� (: allocated (t, va))[�]

^ page-aligned (vpa)[�]

^ (va < vpa)[�]

^ 8 va � va1 < vpa: (: allocated (t, va1))[�]

^ allocated (t, vpa)[�]

Vm-Region-Outputs

� 9 m 2 all-entities:

(map-rel (t, m, vpa, o, inh, CP, MP)[�]

^ Vm-Region-Range (m)

^ Vm-Region-Name-Port-Selected (m)

^ Vm-Region-Shared-Flag-Set (m))

Vm-Region-Range (m)

� 9 0 � i < l:

(page-aligned (i)[�]

! map-rel (t, m, vpa + i , o + i , inh, CP, MP)[�])

12In the implementation, it may be that the following virtual page address has the

identical attributes. That is, the given region is not the largest posible with those

attributes. The implementation de�nes a region with the vm entry data structure.

94

Vm-Region-Name-Port-Selected (m)

� exists-name-port (m)[�] ! Insert-Send-Right (t, name-port (m), n)

Vm-Region-Shared-Flag-Set (m)

� 9 t1 2 all-entities, 0 � vpa1 < address-space-limit:

((t1 6= t)[�]

^ allocated (t1, vpa1)[�]

^ (mapped-memory (t1, trunc-page (vpa1)) = m)[�]

^ (mapped-o�set (t1, trunc-page (vpa1)) = o)[�])

! 3"shared[�]

An invalid argument outcome results when the target task is not a

task. The no-space outcome results when there are no more allocated

regions following va.

Vm-Region-Invalid-Argument

� 3(: taskp (t))[�] ; 3"(rc = 'kern-invalid-argument)[�]

Vm-Region-No-Space

� 3: 9 va � va1 < address-space-limit:

allocated (t, trunc-page (va1))[�]

; 3"(rc = 'kern-no-space)[�]

Virtual Memory Interface 95

4.9 vm write

SPECIFICATION

Copy a region of data from the agent (current) task to the target task.

PARAMETERS

� ct. The agent (current) task.

� va1. An address in ct's address space.

� t. The target task.

� va2. A virtual address in t's address space.

� l. The length of the region of interest.

OUTCOMES

The possible outcomes are success, invalid argument, invalid address,

and protection-failure.

Vm-Writep

� Vm-Write-Success

_ Vm-Write-Invalid-Argument

_ Vm-Write-Invalid-Address

_ Vm-Write-Protection-Failure

SPECIFICATION

On a successful outcome, the source region in ct is copied to the desti-

nation region in t.

96

Vm-Write-Success

� 8 0 � i < l:

(9 (0 � w < wordsize):

(3(allocated (ct, trunc-page (va1 + i))[�]

^ ('read

2 protection (ct, trunc-page (va1 + i)))[�]

^ va-wordp (ct, va1 + i , w)[�])

; allocated (t, trunc-page (va2 + i))[�]

; "va-wordp (t, va2 + i , w)[�]))

; 3"(rc = 'kern-success)[�]

An invalid argument outcome results when the target task is not

a task. The invalid address outcome results when there is a virtual

address between va and va + l that is not a valid address. The

protection-failure outcome occurs when either the source region cannot

be read or the destination region cannot be written.

Vm-Write-Invalid-Argument

� 3(: taskp (t))[�] ; 3"(rc = 'kern-invalid-argument)[�]

Vm-Write-Invalid-Address

� 9 0 � i < l:

(3(taskp (ct)

^ : allocated (ct, trunc-page (va1 + i)))[�]

_ 3(taskp (t)

^ : allocated (t, trunc-page (va2 + i)))[�]

; 3"(rc = 'kern-invalid-address)[�])

Vm-Write-Protection-Failure

� 9 0 � i < l:

(3(allocated (t, trunc-page (va1 + i))

^ 'read

62 protection (t, trunc-page (va1 + i)))[�]

_ 3(allocated (t, trunc-page (va2 + i))

^ 'write

62 protection (t, trunc-page (va2 + i)))[�]

; 3"(rc = 'kern-protection-failure)[�])

Chapter 5

Thread Interface

97

98

5.1 mach thread self

DESCRIPTION

Look up the sself port for a thread. Kernel services on behalf of a

thread are requested by sending messages to its self port. The sself

port is usually the same as the self port, unless a debugging task has

interposed itself.

PARAMETERS

th. The thread of interest.

p. [out] The thread's sself port.

OUTCOMES

The implementation operates implicitly on the currently executing thread.

The return code is also implicit; it expects the outcome to always be

success.

SPECIFICATION

On a successful outcome (the only kind), input argument th is found

to be a thread, and then its sself port is found. If the thread happens

not to have a sself port, then null-ptr is returned.

Mach-Thread-Self-Success

� 3threadp (th)[�]

; Mach-Thread-Self-Found

; 3"(rc = 'kern-success)[�]

Mach-Thread-Self-Found

� ((: exists-thread-sself (th))[�] ; 3"(p = null-ptr)[�])

_ (exists-thread-sself (th)[�] ; 3"(p = thread-sself (th))[�])

Thread Interface 99

5.2 thread create

DESCRIPTION

Create and initialize a new thread, and associate it with a given target

task.

PARAMETERS

t. The parent task.

th. [out] The new thread.

OUTCOMES

We specify four possible outcomes: success, failure, invalid argument,

and resource shortage.

Thread-Createp

� Thread-Create-Success

_ Thread-Create-Failure

_ Thread-Create-Invalid-Argument

_ Thread-Create-Resource-Shortage

SPECIFICATION

On a successful outcome, the thread is created and initialized. The self

port is created, and the sself port is initially the self port. The eport

is not created. It defaults to the task's eport (if any). The thread's

processor set is inherited from its owning task, if it is assigned to one.

If not, the thread is assigned to the default processor set.

Thread-Create-Success

� 3taskp (t)[�]

; 3"threadp (th)[�]

; Thread-Initialized

; 3"(rc = 'kern-success)[�]

100

Thread-Initialized

� Thread-Initialized-Self-Port

^ Thread-Initialized-Eport

^ Thread-Initialized-Procset

^ 3"task-thread-rel (t, th)[�]

Thread-Initialized-Self-Port

� 9 p 2 all-entities:

(3"portp (p)[�]

; 3"thread-self-rel (th, p)[�] ^ 3"thread-sself-rel (th, p)[�])

Thread-Initialized-Eport

� 9 p 2 all-entities:

(3task-eport-rel (t, p)[�] ; 3"thread-eport-rel (th, p)[�])

_ (3(: exists-task-eport (t))[�]

; 3(: exists-thread-eport (th))[�])

Thread-Initialized-Procset

� 9 procset 2 all-entities:

((3procset-task-rel (t, procset)[�]

; 3"procset-thread-rel (th, procset)[�])

_ (3(: exists-task-assigned-procset (t))[�]

; 3default-procset-rel (procset)[�]

; 3"procset-thread-rel (procset , th)[�]))

An invalid argument outcome occurs if t is found not to be a task.

A failure outcome is one in which task t disappears due to interference

from some other agent.

Thread-Create-Invalid-Argument

� 3(: taskp (t))[�] ; 3"(rc = 'kern-invalid-argument)[�]

Thread-Create-Failure

� 3taskp (t)[�]

; 3ytaskp (t)[�]

; 3(: taskp (t))[�]

; 3"(rc = 'kern-failure)[�]

Thread-Create-Resource-Shortage

� 3"(rc = 'kern-resource-shortage)[�]

Thread Interface 101

5.3 thread get special port

DESCRIPTION

Look up one of a thread's special ports.

PARAMETERS

th. The target thread.

which. A scalar value indicating which special port to return.

p. [out] The returned port.

OUTCOMES

There are three possible outcomes: success, failure and invalid-argument.

Thread-Get-Special-Portp

� Thread-Get-Special-Port-Success

_ Thread-Get-Special-Port-Failure

_ Thread-Get-Special-Port-Invalid-Argument

SPECIFICATION

On a successful outcome, th is found to be a thread, and which is one

of two constants (see below).

Thread-Get-Special-Port-Success

� Thread-Get-Special-Port-Exception-Port

_ Thread-Get-Special-Port-Kernel-Port

; 3"(rc = 'kern-success)[�]

On a successful outcome, p 6= null-ptr is the port requested by

the parameter which, while p =null-ptr indicates the thread was

found not to have a port in the requested relation.

102

Thread-Get-Special-Port-Exception-Port

� 3(which = 'exception-port)[�]

; 3threadp (th)[�]

; 3Thread-Get-Special-Port-Exception-Port1

Thread-Get-Special-Port-Exception-Port1

� (3(: exists-thread-eport (th))[�] ; 3"(p = null-ptr)[�])

_ (3exists-thread-eport (th)[�] ; 3"(p = thread-eport (th))[�])

Thread-Get-Special-Port-Kernel-Port

� 3(which = 'kernel-port)[�]

; 3threadp (th)[�]

; 3Thread-Get-Special-Port-Kernel-Port1

Thread-Get-Special-Port-Kernel-Port1

� (3(: exists-thread-sself (th))[�] ; 3"(p = null-ptr)[�])

_ (3exists-thread-sself (th)[�] ; 3"(p = thread-sself (th))[�])

An invalid argument outcome occurs if t is found not to be a task.

A failure outcome is one in which task t disappears due to interference

from some other agent.

Thread-Get-Special-Port-Failure

� 3threadp (th)[�]

; 3ythreadp (th)[�]

; 3(: threadp (th))[�]

; 3"(rc = 'kern-failure)[�]

Thread-Get-Special-Port-Invalid-Argument

� 3(which 62 '(thread-kernel-port

thread-exception-port))[�]

_ 3(: threadp (th))[�]

; 3"(rc = 'kern-invalid-argument)[�]

Thread Interface 103

5.4 thread set special port

DESCRIPTION

Give a new value to one of a thread's special ports.

PARAMETERS

th. The target thread.

which. A scalar value indicating which special port to set.

p. The new value for the special port, or null-ptr.

OUTCOMES

There are three possible outcomes for this program: success, invalid

argument and failure.

Thread-Set-Special-Portp

� Thread-Set-Special-Port-Success

_ Thread-Set-Special-Port-Failure

_ Thread-Set-Special-Port-Invalid-Argument

SPECIFICATION

The speci�cation for thread set special port is nearly identical to

that for thread get special port. The only di�erence is in the inter-

face, where p is an input parameter in one, and an output parameter

in another.

On a successful outcome, p 6=null-ptr is the new port requested

set by the parameterwhich, while p=null-ptr indicates that no port

should be in the requested relation. We say that a special port relation

occurs (p[�]) rather than is asserted (p[�]), to admit computations that

set a special port that was already in that relation.

104

Thread-Set-Special-Port-Success

� Thread-Set-Special-Port-Exception-Port

_ Thread-Set-Special-Port-Kernel-Port

; 3"(rc = 'kern-success)[�]

Thread-Set-Special-Port-Exception-Port

� 3(which = 'exception-port)[�]

; 3threadp (th)[�]

; 3Thread-Set-Special-Port-Exception-Port1

Thread-Set-Special-Port-Exception-Port1

� 3thread-eport-rel (th, p)[�]

_ (3(p = null-ptr)[�] ; 3(: exists-thread-eport (th))[�])

Thread-Set-Special-Port-Kernel-Port

� 3(which = 'kernel-port)[�]

; 3threadp (th)[�]

; 3Thread-Set-Special-Port-Kernel-Port1

Thread-Set-Special-Port-Kernel-Port1

� 3thread-sself-rel (th, p)[�]

_ (3(p = null-ptr)[�] ; 3(: exists-thread-sself (th))[�])

An invalid argument outcome occurs if t is found not to be a task.

A failure outcome is one in which task t disappears due to interference

from some other agent.

Thread-Set-Special-Port-Failure

� 3threadp (th)[�]

; 3ythreadp (th)[�]

; 3(: threadp (th))[�]

; 3"(rc = 'kern-failure)[�]

Thread-Set-Special-Port-Invalid-Argument

� 3(which 62 '(thread-kernel-port

thread-exception-port))[�]

_ 3(: threadp (th))[�]

; 3"(rc = 'kern-invalid-argument)[�]

Thread Interface 105

5.5 thread terminate

DESCRIPTION

Deallocate a thread.

PARAMETERS

th. The target thread.

OUTCOMES

There are three possible outcomes: success, invalid argument and fail-

ure.

Thread-Terminatep

� Thread-Terminate-Success

_ Thread-Terminate-Invalid-Argument

_ Thread-Terminate-Failure

SPECIFICATION

On a successful return, the thread and its self port are killed.

Thread-Terminate-Success

� (3threadp (th)[�]

; 38 p 2 entities:

(thread-self-rel (th, p)[�] ! Terminate-Port (p))

; 3#entityp (th)[�])

; 3"(rc = 'kern-success)[�]

For thread-terminate, the semantics for the failure outcome do not

follow the patterm of other kernel calls. It indicates either that the

agent task or thread is terminated during the execution of the kernel

call, or that some other agent interferes with the target thread. De-

pending on which case occurs, th may or may not be terminated. We

can only infer that the precondition has been met.

An outcome of invalid-argument indicates that the argument th is

not a thread entity.

106

Thread-Terminate-Failure

� 3threadp (th)[�] ; 3"(rc = 'kern-invalid-argument)[�]

Thread-Terminate-Invalid-Argument

� 3(: threadp (th))[�] ; 3"(rc = 'kern-failure)[�]

Chapter 6

Task Interface

107

108

6.1 mach task self

DESCRIPTION

Look up the sself port for a task. The sself port is usually the same as

the self port, unless a debugging task has interposed itself.

PARAMETERS

t. The target task.

p. [out] The task's sself port, or null-ptr if no sself port exists.

In the current Mach implementation, a task argument is not supplied to

mach task self; it returns the self port of the currently executing task.

The return code is also implicit; it expects the return code to always

be 'kern-success. To be consistent with other speci�cations, we have

included a task IN parameter and a return code OUT parameter.

OUTCOMES

A successful outcome is the only possibility.

SPECIFICATION

The input argument t is found to be a task, and its sself port is found.

Mach-Task-Selfp

� 3taskp (t)[�]

; Mach-Task-Self-Found

; 3"(rc = 'kern-success)[�]

If p = null-ptr is returned, then a state in which t has no sself

port was encountered. If p 6= null-ptr is returned, then a state in

which p is t's sself port was encountered.

Mach-Task-Self-Found

� (3(: exists-task-sself (t))[�] ; 3"(p = null-ptr)[�])

_ (3exists-task-sself (t)[�] ; 3"(p = task-sself (t))[�])

Task Interface 109

6.2 task create

DESCRIPTION

Create a new (child) task using an existing (parent) task as a template.

PARAMETERS

t1. The parent task.

inh-g. If inh-g is True, the child's address space is inherited from

the parent according to inheritance values at each of the parent's

allocated virtual page addresses. Otherwise, the child's address

space is empty.

t2. [out] The child task.

OUTCOMES

We specify three possible outcomes: success, invalid argument, or re-

source shortage.

Task-Createp

� Task-Create-Success

_ Task-Create-Invalid-Arg

_ Task-Create-Resource-Shortage

SPECIFICATION

On a successful outcome, t1 is found to be a task, and the child task is

created and initialized. Initialization includes creation of several special

ports, and inheritance of the parent's address space and processor set.

We specify nothing about the resource shortage outcome.

Task-Create-Success

� 3taskp (t1)[�]

; 3"taskp (t2)[�]

; Task-Initialized

; 3"(rc = 'kern-success)[�]

110

Task-Initialized

� Task-Self-Created

^ Task-Bport-Initialized

^ Task-Eport-Initialized

^ (inh-g['alpha] ! Task-Memory-Inherited)

^ ((: inh-g)['alpha] ! Task-Memory-Not-Inherited)

^ Task-Procset-Inherited

A port is created and is made the child's self and sself ports.

Task-Self-Created

� 9 p 2 all-entities:

(3"portp (p)[�]

; 3"task-self-rel (t2, p)[�]

^ 3"task-sself-rel (t2, p)[�])

The child either inherits its parent's bootstrap port, or the parent

is found to have no bootstrap port, and so the child is assigned none.

An analogous speci�cation holds for the child's exception port.

Task-Bport-Initialized

� 9 p 2 all-entities:

(3task-bport-rel (t1, p)[�]

; 3"task-bport-rel (t2, p)[�])

_ (3(: exists-task-bport (t1))[�]

; 3(: exists-task-bport (t2))[�])

Task-Eport-Initialized

� 9 p 2 all-entities:

(3task-eport-rel (t1, p)[�]

; 3"task-eport-rel (t2, p)[�])

_ (3(: exists-task-eport (t1))[�]

; 3(: exists-task-eport (t2))[�])

If inh-g =true, each allocated virtual page address (vpa) in the

parent task is allocated to the child according to the inheritance value

associated with the parent's vpa as follows.

Task Interface 111

None. This vpa is not allocated in the child. n

Share. The memory mapped into the parent's address space is mapped

into the child's at the same virtual address.

Copy. A copy of the memory mapped into the parent's address space is

mapped into the child's address space. A new, temporary memory

is created.

If a vpa is not allocated in the parent, then it is not allocated in the

child.

Task-Memory-Inherited

� 8 0 � vpa < address-space-limit:

(page-aligned (vpa)[�]

! (3(: allocated (t1, vpa))[�]

; 3(: allocated (t2, vpa))[�])

_ Task-Memory-None (vpa)

_ Task-Memory-Share (vpa)

_ Task-Memory-Copy (vpa))

Task-Memory-None (vpa)

� 9 m 2 all-entities, 0 � o < memorysize, cp 2 all-psets,

mp 2 all-psets:

(3map-rel (t1, m, vpa, o, 'none, cp, mp)[�]

; 3(: allocated (t2, vpa))[�])

Task-Memory-Share (vpa)

� 9 m 2 all-entities, 0 � o < memorysize, cp 2 all-psets,

mp 2 all-psets:

(3map-rel (t1, m, vpa, o, 'share, cp, mp)[�]

; 3"map-rel (t2, m, vpa, o, 'share, cp, mp)[�])

112

Task-Memory-Copy (vpa)

� 9 m1 2 all-entities, 0 � o1 < memorysize, cp 2 all-psets,

mp 2 all-psets:

(3map-rel (t1, m1, vpa, o1, 'copy, cp, mp)[�]

; 9 m2 2 all-entities, 0 � o2 < memorysize:

(3"memoryp (m2)[�]

; 3"temporary-rel (m2)[�]

^ Extract-Va-Region (t1, vpa, o2, pagesize, m2)

; 3"map-rel (t2, m2, vpa, 'o2, 'copy, cp, mp)[�]))

If inh-g =false, then no virtual addresses are allocated in the

child.

Task-Memory-Not-Inherited

� 8 0 � va < address-space-limit: (3(: allocated (t2, va))[�])

The child is assigned to the parent's processor set if the parent has

one, otherwise the child is assigned to the default processor set.

Task-Procset-Inherited

� 9 procset 2 all-entities:

(3procset-task-rel (procset , t1)[�]

; 3"procset-task-rel (procset , t2)[�])

_ (3(: exists-task-assigned-procset (t1))[�]

; 9 procset 2 all-entities:

(3default-procset-rel (procset)[�]

; 3"procset-task-rel (procset , t2)[�]))

An invalid argument outcome occurs if t1 is discovered not to be a

task.

Task-Create-Invalid-Arg

� 3(: taskp (t1))[�] ; 3"(rc = 'kern-invalid-arg)[�]

Task-Create-Resource-Shortage

� 3"(rc = 'kern-resource-shortage)[�]

Task Interface 113

6.3 task get special port

DESCRIPTION

Look up one of a task's special ports.

PARAMETERS

t. The target task.

which. A scalar value indicating which special port to return.

p. [out] The returned port.

OUTCOMES

There are three possible outcomes: success, failure and invalid-argument.

Task-Get-Special-Portp

� Task-Get-Special-Port-Success

_ Task-Get-Special-Port-Failure

_ Task-Get-Special-Port-Invalid-Arg

SPECIFICATION

On a successful outcome, t is found to be a task, and which is one of

three constants (see below). An invalid argument outcome occurs if t

is found not to be a task, or which has a bad value. A failure outcome

is one in which task t disappears due to interference from some other

process.

Task-Get-Special-Port-Failure

� 3taskp (t)[�]

; 3ytaskp (t)[�]

; 3(: taskp (t))[�]

; 3"(rc = 'kern-failure)[�]

114

Task-Get-Special-Port-Invalid-Arg

� 3(which 62 '(task-bootstrap-port task-exception-port

task-kernel-port))[�]

_ 3(: taskp (t))[�]

; 3"(rc = 'kern-invalid-argument)[�]

Task-Get-Special-Port-Success

� Task-Get-Special-Portp-Bootstrap

_ Task-Get-Special-Portp-Exception

_ Task-Get-Special-Kernel-Port-Success

; 3"(rc = 'kern-success)[�]

On a successful outcome, p 6=null-ptr is the port requested by the

parameter which, while p =null-ptr indicates the task was found

not to have a port in the requested relation.

Task-Get-Special-Portp-Bootstrap

� 3(which = 'task-bootstrap-port)[�]

; (3(: exists-task-bport (t))[�] ; 3"(p = null-ptr)[�])

_ (3exists-task-bport (t)[�] ; 3"(p = task-bport (t))[�])

Task-Get-Special-Portp-Exception

� 3(which = 'task-exception-port)[�]

; (3(: exists-task-eport (t))[�] ; 3"(p = null-ptr)[�])

_ (3exists-task-eport (t)[�] ; 3"(p = task-eport (t))[�])

Task-Get-Special-Kernel-Port-Success

� 3(which = 'task-kernel-port)[�]

; (3(: exists-task-sself (t))[�] ; 3"(p = null-ptr)[�])

_ (3exists-task-sself (t)[�] ; 3"(p = task-sself (t))[�])

Task Interface 115

6.4 task set special port

DESCRIPTION

Set one of a task's special ports: the sself port, the bootstrap port, or

the exception port.

PARAMETERS

t. The target task.

p. The special port, or null-ptr.

which. A scalar value indicating which special port to set.

OUTCOMES

There are three possible outcomes for this program: success, invalid

argument and failure.

Task-Set-Special-Portp

� Task-Set-Special-Port-Success

_ Task-Set-Special-Port-Failure

_ Task-Set-Special-Port-Invalid-Arg

SPECIFICATION

The speci�cation for task set special port is nearly identical to that

for task get special port. The only di�erence is in the interface,

where p is an input parameter in one, and an output parameter in

another.

On a successful outcome, t is found to be a task, and which is one

of three constants (see below). An invalid argument outcome occurs

if t is found not to be a task, or if which has a bad value. A failure

outcome is one in which task t disappears due to interference from some

other process.

116

Task-Set-Special-Port-Failure

� 3taskp (t)[�]

; 3ytaskp (t)[�]

; 3(: taskp (t))[�]

; 3"(rc = 'kern-failure)[�]

Task-Set-Special-Port-Invalid-Arg

� 3(which 62 '(task-bootstrap-port task-exception-port

task-kernel-port))[�]

_ 3(: taskp (t))[�]

; 3"(rc = 'kern-invalid-argument)[�]

Task-Set-Special-Port-Success

� Task-Set-Special-Bootstrap-Port-Success

_ Task-Set-Special-Portp-Exception

_ Task-Set-Special-Kernel-Port-Success

; 3"(rc = 'kern-success)[�]

On a successful outcome, p 6=null-ptr is the new port requested

set by the parameter which, while p=null-ptr indicates that no port

should be in the requested relation.

We say that a special port relation occurs (p[�]) rather than is

asserted ("p[�]), to admit computations that set a special port that

was already in that relation.

Task-Set-Special-Bootstrap-Port-Success

� 3(which = 'task-bootstrap-port)[�]

; (3(p = null-ptr)[�] ; 3(: exists-task-bport (t))[�])

_ 3task-bport-rel (t, p)[�]

Task-Set-Special-Portp-Exception

� 3(which = 'task-exception-port)[�]

; (3(p = null-ptr)[�] ; 3(: exists-task-eport (t))[�])

_ 3task-eport-rel (t, p)[�]

Task-Set-Special-Kernel-Port-Success

� 3(which = 'task-kernel-port)[�]

; (3(p = null-ptr)[�] ; 3(: exists-task-sself (t))[�])

_ 3task-sself-rel (t, p)[�]

Task Interface 117

6.5 task terminate

DESCRIPTION

Kill a task and free its resources.

PARAMETERS

t. The target task.

OUTCOMES

We specify three possible outcomes: success, failure, or invalid argu-

ment.

Task-Terminatep

� Task-Terminate-Success

_ Task-Terminate-Failure

_ Task-Terminate-Invalid-Arg

SPECIFICATION

On a successful outcome, the task and its resources have been removed.

When the task is successfully terminated, a number of other entities are

terminated as well. The task's self port, if it exists, is terminated. All

of the task's threads are terminated. All of the ports to which the

task has a receive right are terminated. All of the memories which are

mapped into the target task, but into no other task, are terminated.

For a discussion of the recursive nature of entity destruction in

Mach, see Section 7.4.1.

118

Task-Terminate-Success

� (3taskp (t)[�]

; 38 p 2 entities:

(task-self-rel (t, p)[�] ! Terminate-Port (p))

^ 38 th 2 threads (t): Terminate-Thread (th)

^ 38 n 2 N , p 2 all-entities:

(r-right (t, n)[�] ^ (named-port (t, n) = p)[�]

! Terminate-Port (p))

^ 38 m 2 entities:

((mapping-tasks (m) = ftg)[�]

! Terminate-Memory (m))

; 3#entityp (t)[�])

; 3(3"(rc = 'kern-success)[�])

The invalid argument outcome occurs when t is found not to be a

task. A failure outcome is one in which the task t disappears due to

interference from some other agent.

Task-Terminate-Invalid-Arg

� 3(: taskp (t))[�] ; 3"(rc = 'kern-invalid-argument)[�]

Task-Terminate-Failure

� 3taskp (t)[�]

; 3ytaskp (t)[�]

; (: taskp (t))[�]

; "(rc = 'kern-failure)[�]

Task Interface 119

6.6 task threads

DESCRIPTION

Return the threads associated with a task.

PARAMETERS

t. The target task.

threads. [out] The returned list of threads.

OUTCOMES

We specify four possible outcomes: success, failure, invalid argument,

or resource shortage.

Task-Threadsp

� Task-Threadsp-Success

_ Task-Threadsp-Invalid-Argument

_ Task-Threadsp-Failure

_ Task-Threads-Resource-Shortage

SPECIFICATION

On a successful outcome, the threads argument represents a snapshot

of the task's threads.

Task-Threadsp-Success

� 3(taskp (t) ^ (threads = threads (t)))[�]

; 3"(rc = 'kern-success)[�]

A failure outcome identi�es a computation in which the task of in-

terest disappears due to interference by some other agent. The invalid-

argument outcome occurs when the argument t is not a task in some

state in the computation1.

1The distinction between these two outcomes in the implementation is the point

in the computation when the check is made.

120

Task-Threadsp-Failure

� 3taskp (t)[�]

; 3ytaskp (t)[�]

; 3(: taskp (t))[�]

; 3"(rc = 'kern-failure)[�]

Task-Threadsp-Invalid-Argument

� 3(: taskp (t))[�] ; 3"(rc = 'kern-invalid-argument)[�]

We do not specify anything about the computation in the case of

resource shortage.

Task-Threads-Resource-Shortage

� 3"(rc = 'kern-resource-shortage)[�]

Chapter 7

Common Speci�cations

121

122

7.1 Introduction

This chapter presents speci�cations for some of the lower-level actions

made on kernel resources. These are used throughout the kernel inter-

face speci�cation. Section 7.2 presents speci�cations for operations on

local port names. Section 7.3 gives virtual memory speci�cations, and

Section 7.4 discusses the termination of kernel entities.

7.2 Actions on Local Names

Local names can name port rights, dead rights, and port sets. Port

rights can be further subdivided into send, receive, and send once rights.

A local name can name multiple send rights to a port, or multiple dead

rights. A reference count associated with each local name gives the

number of times the name has been assigned.

It is common usage to refer to a single reference by a local name

as a \right". A local name can reference a single receive or send-once

right, or a number of send rights, or a number of dead name \rights",

or a single port set \right". For brevity in this section, we will follow

this convention.

The fundamental actions on local names are allocating or deallo-

cating individual rights. Allocating the �rst right reserves a new local

name. For send/receive rights and dead rights, allocating additional

rights for a local name simply increases the reference count. Also, send

and receive rights to a port coalesce under a single name. For receive

rights, send-once rights and port sets, allocating additional rights is not

allowed.

Related actions are inserting and extracting rights. Conceptually,

allocating and deallocating rights create and destroy the rights, while

extracting and inserting are involved with moving the rights from one

place to another. Inserting a right simply allocates the right. Extract-

ing a right from a local name may deallocate the right or clone a new

right (leaving the local name unchanged).

Common Speci�cations 123

7.2.1 Allocating Rights

This section speci�es behaviors of the kernel when a port right of a

certain type is allocated for a local name. When an additional right is

allocated for an existing send/receive right or dead name, the reference

count is incremented, up to a maximum value. The speci�cations for

send rights and dead rights have an extra parameter Æ, which allows

several rights to be allocated at once. For most invocations, Æ = 1.

We specify two cases: either a new local name is created, or the right

is coalesced with an existing name. Additionally, we create composite

allocate speci�cations for use where the distinction is not important.

Creating New Rights

The predicates in this section specify the situation where a new local

name is reserved for a given right. A new send or receive right for a

port cannot be allocated to a name if the port already has a send or

receive right by a di�erent name.

New-Send-Right (t, p, n, Æ)

� 3(: local-namep (t, n))[�]

^ 3(Æ < max-refcount)[�]

^ 3: 9 n0 2 N :

((s-right (t, n0)[�] _ r-right (t, n0)[�])

^ (p = named-port (t, n0))[�])

; 3"port-right-rel (t, p, n, f'sendg, Æ)[�]

New-Receive-Right (t, p, n)

� 3: 9 n0 2 N :

((s-right (t, n0)[�] _ r-right (t, n0)[�])

^ (p = named-port (t, n0))[�])

^ 3(: local-namep (t, n))[�]

; 3"port-right-rel (t, p, n, f'receiveg, 1)[�]

New-Send-Once-Right (t, p, n)

� 3(: local-namep (t, n))[�]

; 3"port-right-rel (t, p, n, f'send-onceg, 1)[�]

124

New-Dead-Right (t, n, Æ)

� 3(: local-namep (t, n))[�] ^ 3(Æ < max-refcount)[�]

; 3"dead-right-rel (t, n, Æ)[�]

New-Port-Set (t, n)

� 3(: local-namep (t, n))[�] ; 3"port-set-rel (t, n, ;)[�]

Coalescing Rights

If a send right to a port is allocated for a local name space where the

port already has a send or receive right, then the reference count is

incremented. We divide the speci�cation into four cases: a send right

can coalesce with a local name that represents send, receive, or both

send and receive rights. Also, dead rights for a given name coalesce.

Coalesce-Send-Send-Right (t, p, n, Æ)

� 9 1 � j < max-refcount:

(3(port-right-rel (t, p, n, f'sendg, j)[�]

^ (j + Æ � max-refcount)[�])

; 3"port-right-rel (t, p, n, f'sendg, j + Æ)[�])

Coalesce-Send-Receive-Right (t, p, n, Æ)

� (3port-right-rel (t, p, n, f'receiveg, 1)[�]

; 3(Æ < max-refcount)[�]

; 3"port-right-rel (t, p, n, f'send, 'receiveg, Æ + 1)[�])

Coalesce-Send-Sr-Right (t, p, n, Æ)

� 9 1 � j < max-refcount:

(3(port-right-rel (t, p, n, f'send, 'receiveg, j)[�]

^ (j + Æ � max-refcount)[�])

; 3"port-right-rel (t, p, n, f'send, 'receiveg, j + Æ)[�])

Coalesce-Receive-Send-Right (t, p, n)

� 9 1 � j < (max-refcount � 1):

(3port-right-rel (t, p, n, f'sendg, j)[�]

; 3"port-right-rel (t, p, n, f'send, 'receiveg, j + 1)[�])

Coalesce-Dead-Right (t, n, Æ)

� 9 1 � i < max-refcount:

(3(dead-right-rel (t, n, i)[�] ^ (i + Æ � max-refcount)[�])

; 3"dead-right-rel (t, n, i + Æ)[�])

Common Speci�cations 125

Composite Speci�cations

In most contexts, the distinctions among the di�erent ways to allocate

rights are not important. We provide composite speci�cations for these

cases.

Allocate-Send-Right (t, p, n, Æ)

� New-Send-Right (t, p, n, Æ)

_ Coalesce-Send-Send-Right (t, p, n, Æ)

_ Coalesce-Send-Receive-Right (t, p, n, Æ)

_ Coalesce-Send-Sr-Right (t, p, n, Æ)

Coalesce-Send-Right (t, p, n, Æ)

� Coalesce-Send-Send-Right (t, p, n, Æ)

_ Coalesce-Send-Receive-Right (t, p, n, Æ)

_ Coalesce-Send-Sr-Right (t, p, n, Æ)

Allocate-Receive-Right (t, p, n)

� New-Receive-Right (t, p, n) _ Coalesce-Receive-Send-Right (t, p, n)

Allocate-Dead-Right (t, n, Æ)

� New-Dead-Right (t, n, Æ) _ Coalesce-Dead-Right (t, n, Æ)

7.2.2 Deallocating Port Rights

In this section, we specify behaviors in which rights are deallocated from

a local name. A user task can make this request directly as speci�ed in

Mach-Port-Mod-Refsp and others, or indirectly as in Mach-Msg-Sendp.

The argument Æ is the number of rights of this type to deallocate |

the amount by which the reference count is decremented. In the typical

case, Æ = 1.

As for allocating rights, we specify two classes of behaviors: either

the local name is removed from the task's port name space, or the rights

are de-coalesced from additional rights. Additionally, we provide com-

posite deallocate speci�cations for the instances where the distinction

is not important.

126

Removing Local Names

In this section we specify behaviors that cause a local name to be

removed from a task's name space.

For a send-only right, the local name is deallocated from the name

space of the target task if the current reference count becomes zero1.

Remove-Send-Right (t, n, Æ)

� 9 p 2 all-entities:

(3port-right-rel (t, p, n, f'sendg, Æ)[�] ; 3#local-namep (t, n)[�])

Remove-Receive-Right (t, n)

� 9 p 2 all-entities:

(3port-right-rel (t, p, n, f'receiveg, 1)[�] ; 3#local-namep (t, n)[�])

A send-once right always has a reference count of 1, so decrementing

the reference count causes the name to be deallocated from the target

task's name space2.

Remove-Send-Once-Right (t, n) � 3so-right (t, n)[�] ; 3#local-namep (t, n)[�]

Remove-Dead-Right (t, n, Æ)

� 3dead-right-rel (t, n, Æ)[�] ; 3#local-namep (t, n)[�]

Remove-Port-Set-Name (t, n)

� 3port-set-namep (t, n)[�] ; 3#local-namep (t, n)[�]

De-Coalescing Rights

Send rights coalesce with receive rights. If a send right shares a local

name with a receive right, the receive right contributes one to the ref-

erence count. A send-receive right is converted to a receive-only right

when the reference count becomes one.

1A no-more-senders noti�cation is sent if the receiver requests it, and the last

send right to the port is deleted. We do not model this activity.
2A temporal invariant of the kernel is that eventually exactly one message is

queued for each send-once right created for a port. If a send-once right is destroyed,

the kernel enqueues a send-once noti�cation message alerting the receiver of that

occurrence. We do not model this activity.

Common Speci�cations 127

De-Coalesce-Send-Send-Right (t, n, Æ)

� 9 p 2 all-entities, 1 � i < max-refcount:

(3port-right-rel (t, p, n, f'sendg, i)[�]

; 3(Æ < i)[�]

; 3"port-right-rel (t, p, n, f'sendg, i � Æ)[�])

De-Coalesce-Send-Sr-Right (t, n, Æ)

� 9 p 2 all-entities, 1 � i < max-refcount:

(3port-right-rel (t, p, n, f'send, 'receiveg, i)[�]

; 3(Æ < i)[�]

; 3"port-right-rel (t, p, n, f'send, 'receiveg, i � Æ)[�])

When a receive right is destroyed, remaining send rights are turned

into dead names.

De-Coalesce-Receive-Sr-Right (t, n)

� 9 p 2 all-entities, 1 � i < max-refcount:

(3port-right-rel (t, p, n, f'send, 'receiveg, i)[�]

; 3"dead-right-rel (t, n, i � 1)[�])

De-Coalesce-Dead-Right (t, n, Æ)

� 9 1 � i < max-refcount:

(3dead-right-rel (t, n, i)[�]

; 3(Æ < i)[�]

; 3"dead-right-rel (t, n, i � 1)[�])

Composite Speci�cations

In mny cases, the distinctions amoung the di�erent ways to remove or

de-coalesce rights is not important. We provide composite speci�cations

for thse cases.

Deallocate-Send-Right (t, n, Æ)

� Remove-Send-Right (t, n, Æ)

_ De-Coalesce-Send-Send-Right (t, n, Æ)

_ De-Coalesce-Send-Sr-Right (t, n, Æ)

Deallocate-Receive-Right (t, n)

� Remove-Receive-Right (t, n) _ De-Coalesce-Receive-Sr-Right (t, n)

128

Deallocate-Dead-Right (t, n, Æ)

� Remove-Dead-Right (t, n, Æ) _ De-Coalesce-Dead-Right (t, n, Æ)

7.2.3 Moving Port Rights

The action of moving a port right from one task to another is decom-

posed into an extraction (from the source task) followed by an insertion

(into the destination task). When a port right is moved via IPC, there

is an intermediate state in which the right is a transit right encoded in

a queued message.

Extracting a right is closely related, but not equivalent, to deallo-

cating a right (Section 7.2.2). Extracting a right from a task's local

name space need not cause a change in the name space { extracted

rights can be cloned from existing rights. A right can be moved from a

name space, in which case the e�ects are seen in the name space.

Preconditions for Right Movement

A pair hinstr , ri describes the extraction of a right. Six combinations

of right r and instruction instr are legal for extracting a right, as enu-

merated in the de�nitions below. For the special case of creating transit

rights, a dead local name may be substituted for a send or send-once

right if the instruction is 'move or 'copy. The second de�nition de-

scribes the case where a dead name is allowed.

A pair hinstr; righti speci�es a right to moved and the method by

which it is moved. These are the legal pairs.

Legal-Instr-Right (instr , r)

� 3(hinstr , ri = h'move, 'receivei)[�]

_ 3(hinstr , ri = h'move, 'sendi)[�]

_ 3(hinstr , ri = h'move, 'send-oncei)[�]

_ 3(hinstr , ri = h'copy, 'sendi)[�]

_ 3(hinstr , ri = h'make, 'sendi)[�]

_ 3(hinstr , ri = h'make, 'send-oncei)[�]

The following speci�cation recognizes a computation in which � rec-

ognizes that a target task t has the correct right for a given hinstr; righti

pair.

Common Speci�cations 129

Legal-Name-Instr-Right (t, n, instr , r)

� 3((hinstr , ri = h'move, 'receivei)[�] ^ r-right (t, n)[�])

_ 3((hinstr , ri = h'move, 'sendi)[�] ^ s-right (t, n)[�])

_ 3((hinstr , ri = h'move, 'send-oncei)[�]

^ so-right (t, n)[�])

_ 3((hinstr , ri = h'copy, 'sendi)[�] ^ s-right (t, n)[�])

_ 3((hinstr , ri = h'make, 'sendi)[�] ^ r-right (t, n)[�])

_ 3((hinstr , ri = h'make, 'send-oncei)[�] ^ r-right (t, n)[�])

The predicate Legal-Name-Instr-Right-Deadok describes a compu-

tation in which a target task t has either the correct preconditions for

a given hinstr; righti pair, or has an acceptable dead right.

Legal-Name-Instr-Right-Deadok (t, n, instr , r)

� Legal-Name-Instr-Right (t, n, instr , r)

_ 3((hinstr , ri = h'move, 'sendi)[�]

^ dead-right-namep (t, n)[�])

_ 3((hinstr , ri = h'move, 'send-oncei)[�]

^ dead-right-namep (t, n)[�])

_ 3((hinstr , ri = h'copy, 'sendi)[�]

^ dead-right-namep (t, n)[�])

Port Right Extraction

This section introduces speci�cations for the various methods of ex-

tracting a port right from a target task. The speci�cation Extract-

Port-Right is a disjunction of all possibilities.

The following de�nitions characterize the nine ways a right may be

extracted from a task's local name space. These are the six enumer-

ated above and the three ways a dead right may be substituted for a

send/send-once right.

Move-Receive di�ers from Deallocate-Receive-Right in that send

rights are not converted to dead rights.

130

Extract-Port-Right (t, n, instr , r , p)

� (3(hinstr , ri = h'make, 'sendi)[�] ; 3Make-Send (t, n, p))

_ (3(hinstr , ri = h'copy, 'sendi)[�] ; 3Copy-Send (t, n, p))

_ (3(hinstr , ri = h'move, 'sendi)[�] ; 3Move-Send (t, n, p))

_ (3(hinstr , ri = h'move, 'send-oncei)[�]

; 3Move-Send-Once (t, n, p))

_ (3(hinstr , ri = h'make, 'send-oncei)[�]

; 3Make-Send-Once (t, n, p))

_ (3(hinstr , ri = h'move, 'receivei)[�]

; 3Move-Receive (t, n, p))

Move-Receive (t, n, p)

� 9 R 2 all-rsets, 1 � i < max-refcount:

(3port-right-rel (t, p, n, R, i)[�]

; (3(R = f'receiveg)[�] ; 3#local-namep (t, n)[�])

_ (3(R = f'send, 'receiveg)[�]

; 3"port-right-rel (t, p, n, f'sendg, i � 1)[�]))

Move-Send (t, n, p)

� 9 R 2 all-rsets, 1 � refcount < max-refcount:

(3(port-right-rel (t, p, n, R, refcount)[�] ^ ('send 2 R)[�])

; 3Deallocate-Send-Right (t, n, 1))

Move-Send-Once (t, n, p)

� 3port-right-rel (t, p, n, f'send-onceg, 1)[�]

; 3Remove-Send-Once-Right (t, n)

Copying and making rights produce no side e�ect on the source

name space. We merely specify pre-conditions on the source that make

the extraction possible.

Copy-Send (t, n, p)

� 9 R 2 all-rsets, 1 � refcount < max-refcount:

(3(port-right-rel (t, p, n, R, refcount)[�] ^ ('send 2 R)[�]))

Make-Send (t, n, p)

� 9 R 2 all-rsets, 1 � refcount < max-refcount:

(3(port-right-rel (t, p, n, R, refcount)[�] ^ ('receive 2 R)[�]))

Common Speci�cations 131

Make-Send-Once (t, n, p)

� 9 R 2 all-rsets, 1 � refcount < max-refcount:

(3(port-right-rel (t, p, n, R, refcount)[�] ^ ('receive 2 R)[�]))

The following are useful composite speci�cations.

Extract-Send-Right (n, instr , r , p)

� (3(hinstr , ri = h'make, 'sendi)[�] ; 3Make-Send (t, n, p))

_ (3(hinstr , ri = h'copy, 'sendi)[�] ; 3Copy-Send (t, n, p))

_ (3(hinstr , ri = h'move, 'sendi)[�] ; 3Move-Send (t, n, p))

_ (3(hinstr , ri = h'move, 'send-oncei)[�]

; 3Move-Send-Once (t, n, p))

_ (3(hinstr , ri = h'make, 'send-oncei)[�]

; 3Make-Send-Once (t, n, p))

Extract-Dead-Right (t, n, instr , r)

� (3(hinstr , ri = h'copy, 'sendi)[�] ; 3Copy-Dead (t, n))

_ (3(hinstr , ri = h'move, 'sendi)[�] ; 3Move-Dead (t, n))

_ (3(hinstr , ri = h'move, 'send-oncei)[�] ; 3Move-Dead (t, n))

Move-Dead (t, n)

� 9 1 � i < max-refcount:

(3dead-right-rel (t, n, i)[�] ; 3Deallocate-Dead-Right (t, n, 1))

Copy-Dead (t, n) � 3dead-right-namep (t, n)[�]

Port Right Insertion

Here are speci�cations for the various methods of inserting a port right

into a target task. They refer to the more primitive de�nitions in

Section 7.2.1.

We must consider four cases when inserting a send right: either the

port is already known by a send right, a receive right, both, or neither.

A �fth case can arise as a result of a resource overow for the port right

refcount.

Insert-Port-Right (t, p, n, r)

� (3(r = 'send)[�] ; 3Insert-Send-Right (t, p, n))

_ (3(r = 'receive)[�] ; 3Insert-Receive-Right (t, p, n))

_ (3(r = 'send-once)[�] ; 3Insert-Send-Once-Right (t, p, n))

132

Insert-Send-Right (t, p, n)

� New-Send-Right (t, p, n, 1)

_ Coalesce-Send-Receive-Right (t, p, n, 1)

_ Coalesce-Send-Send-Right (t, p, n, 1)

_ Coalesce-Send-Sr-Right (t, p, n, 1)

_ Coalesce-Right-Refcount-Pegged (t, p, n)

A receive right to a port may either be new in this task's name

space, or it will coalesce with an existing send right.

Insert-Receive-Right (t, p, n)

� New-Receive-Right (t, p, n)

_ Coalesce-Receive-Send-Right (t, p, n)

_ Coalesce-Right-Refcount-Pegged (t, p, n)

Coalesce-Right-Refcount-Pegged (t, p, n)

� 9 R 2 ff'sendg, f'send, 'receivegg:

(3port-right-rel (t, p, n, R, max-refcount)[�])

A send-once right does not coalesce with any existing right.

Insert-Send-Once-Right (t, p, n) � New-Send-Once-Right (t, p, n)

7.3 Actions on Virtual Memory

7.3.1 Temporally Allocated

The predicate All-Eventually-Allocated recognizes a computation in

which each address has a state in which it is allocated. They are not

required to be allocated simultaneously.

Similarly, the predicate All-Eventually-Not-Allocated recognizes a

computation in which each address has a state in which it is not allo-

cated.

All-Eventually-Allocated (t, va, l)

� 8 va � vpa < (va + l): (3allocated (t, vpa)[�])

All-Eventually-Not-Allocated (t, va, l)

� 8 va � vpa < (va + l): (3(: allocated (t, vpa))[�])

Common Speci�cations 133

7.3.2 Extracting and Inserting Data

The predicate Extract-Va-Region recognizes a computation in which

the contents of a region of a task's address space are copied into a

memory entity. The predicates Insert-In-Line-Data and Insert-Out-Of-

Line-Data describe how the contents of a memory entity are copied into

a task's address space, either in-line or out-of-line.

Extract-Va-Region (t, va, o, l , m)

� 8 0 � i < l :

(9 (0 � w < wordsize):

(3va-wordp (t, va + i , w)[�]

; 3"m-wordp (m, trunc-page (o + i), o + i , w)[�]))

Insert-In-Line-Data (t, va, m, o, l)

� 8 0 � i < l :

(9 (0 � w < wordsize):

(3m-wordp (m, trunc-page (o + i), o + i , w)[�]

; 3"va-wordp (t, va + i , w)[�]))

Insert-Out-Of-Line-Data (t, va, m, o, l)

� 8 0 � i < l :

(3(: allocated (t, va + i))[�]

; 3"map-rel (t, m, trunc-page (va + i), trunc-page (o + i),

'(read write), '(read write execute), 'copy)[�])

7.4 Entity Termination

7.4.1 Introduction

When a Mach kernel entity (e.g., task, port) is terminated, a collection

of related entities may be terminated along with it. This is because

termination of the initial entity may remove the last reference to related

entities, which therefore become candidates for garbage collection.

Entity termination is a recursive process: termination of a port

may cause termination of other ports. For example, when port p is

terminated, all ports for which p is carrying a receive right are also

134

terminated. Side e�ects may occur as a result of entity termination, as

well. When a port is killed, send rights to the port are converted to

dead rights.

Termination of an entity is like pulling a burned-out light o� of a

Christmas tree: all of the burned-out lights along the same string must

be pulled o� as well. The problem is to know what lights are allowed to

remain. This report gives a partial speci�cation for entity termination

in the Mach kernel. We completely describe how entity termination

recurs. We partially specify the side e�ects of entity termination.

7.4.2 Informal Rules for Dependent Entity Termi-

nation

There are rules that determine, for each entity class, what other entities

must be terminated when a member of the class is terminated. The

purpose of this section is to state these rules, and to describe side

e�ects of entity termination.

We hypothesize a recursive function Terminate on an entity, that

terminates an entity and certain \dependent" entities. The following

discussion gives an informal description of entity termination.

Task Termination

When task t is terminated, Terminate (t) must additionally perform

the following terminations.

� For t's self port p, Terminate (p)

� For all threads th owned by t, Terminate (th):

� For all ports p for which t has the receive right, Terminate (p).

� For all memoriesm which are mapped only into t, Terminate (m).

Thread Termination

When thread th is terminated, Terminate (th) must additionally per-

form the following terminations.

� For th's self port p, Terminate (p).

Common Speci�cations 135

Port Termination

When port p is terminated, Terminate (p) must additionally perform

the following terminations and side e�ects.

� For all messages mg contained in the port, Terminate (mg).

� If p is the object port of some memory m, and m is mapped into

no task, Terminate (m).

� Side E�ect: Convert all send and send-once rights to p to dead

rights3.

� Side E�ect: Convert all transit rights to p to dead transit rights.

Message Termination

When a message is received, the message entity is terminated but the

contents of the message is copied to the receiver's address space. We

are not concerned here with this operation. We are only concerned with

the operation that occurs when a message's port is terminated, which

requires throwing away the contents of a message. When message mg is

terminated, Terminate (mg) must additionally perform the following

terminations.

� For all ports p for whichmg carries a transit receive right, Terminate (p).

� For all transit memories m in mg, Terminate (m).

Memory Termination

When memory m is terminated, Terminate (m) must additionally per-

form the following terminations.

� For all pages pg representing portions of m, Terminate (pg).

� For m's control port p, Terminate (p).

� For m's name port p, Terminate (p).

3Deleting the last send right to a port may result in the enqueuing of a no-more-

senders noti�cation. Deleting a send-once rights always results in the enqueing of

a send-once noti�cation. We do not model these events.

136

Page Termination

Terminating a page requires no other entity terminations or side e�ects.

Processor Termination

Terminating a processor requires no other entity terminations or side

e�ects.

Processor Set Termination

When processor set pset is terminated, Terminate (pset) must addi-

tionally perform the following terminations.

� For pset's self port p, Terminate (p).

� For pset's name port p, Terminate (p).

Device Termination

Terminating a device requires no other entity terminations or side ef-

fects.

7.4.3 A Formal Speci�cation for Entity Termina-

tion

We can formally specify entity termination using the temporal logic

notation. The following is a set of mutually recursive de�nitions, each

of which captures the informal description of the previous section. The

agent of each of the computations is represented by �. In each case,

we specify that an entity of the appropriate class is recognized and

terminated, and that the appropriate dependent terminations and side

e�ects eventually occur.

Common Speci�cations 137

Terminate-Task (t)

� (3taskp (t)[�]

; 38 p 2 entities:

(task-self-rel (t, p)[�] ! Terminate-Port (p))

^ 38 th 2 threads (t): Terminate-Thread (th)

^ 38 n 2 N , p 2 all-entities:

(r-right (t, n)[�] ^ (named-port (t, n) = p)[�]

! Terminate-Port (p))

^ 38 m 2 entities:

((mapping-tasks (m) = ftg)[�] ! Terminate-Memory (m))

; 3#entityp (t)[�])

Terminate-Thread (th)

� (3threadp (th)[�]

; 38 p 2 entities:

(thread-self-rel (th, p)[�] ! Terminate-Port (p))

; 3#entityp (th)[�])

Terminate-Port (p)

� (3portp (p)[�]

; 38 t 2 all-entities, n 2 nset , 0 � i < max-refcount:

(port-right-rel (t, p, n, f'sendg, i)[�]

! 3"dead-right-rel (t, n, i)[�])

^ 38 mg 2 all-entities, r 2 R, 0 � i < max-msg-size:

(transit-right-rel (mq , p, r , i)[�]

! 3"null-message-element-rel (mg , 'dead-right, i)[�])

^ 38 mg 2 all-entities:

((mg 2 messages (p))[�] ! Terminate-Message (mg))

^ 38 m 2 all-entities:

(object-port-rel (m, p) ^ : mapped (m)

! Terminate-Memory (m))

; 3#entityp (p)[�])

138

Terminate-Message (mg)

� (3messagep (mg)[�]

; 38 p 2 all-entities, 0 � i < max-msg-size:

(transit-right-rel (mg , p, 'receive, i)[�]

! Terminate-Port (p))

^ 38 m 2 all-entities, 0 � i < max-msg-size:

(exists-transit-memory (mg , i)[�]

^ (trans-memory (mg , i) = m)[�]

! Terminate-Memory (m))

; 3#entityp (mg)[�])

Terminate-Memory (m)

� (3memoryp (m)[�]

; 38 p 2 entities:

(control-port-rel (m, p)[�] ! Terminate-Port (p))

^ 38 p 2 entities:

(name-port-rel (m, p)[�] ! Terminate-Port (p))

^ 38 pg 2 entities, 0 � o < memorysize:

(represents-rel (pg , m, o) ! Terminate-Page (pg))

; 3#entityp (m)[�])

Terminate-Page (pg) � 3pagep (pg)[�] ; 3#entityp (pg)[�]

Terminate-Proc (proc) � 3procp (proc)[�] ; 3#entityp (proc)[�]

Terminate-Procset (procset)

� (3procsetp (procset)[�]

; 38 p 2 entities:

(procset-self-rel (procset , p)[�] ! Terminate-Port (p))

^ 38 p 2 entities:

(procset-name-port-rel (procset , p)[�]

! Terminate-Port (p))

; 3#entityp (procset)[�])

Terminate-Device (d) � 3devicep (d)[�] ; 3#entityp (d)[�]

We can observe several instances of mutual recursion in the above

de�nitions. For example, we have the following.

139

Terminate-Port (p)�!Terminate-Message (mg)�!Terminate-Port (p)

This chain represents the following sequence:

� Terminate-Port (p)

� For all messagesmg contained in the port, Terminate-Message (mg).

� For all ports p for whichmg carries a transit receive right, Terminate-

Port (p).

Can we be sure that such a recursion completes? If port termina-

tion runs without interference, e.g., in the absence of concurrent kernel

computations, then there is a danger that the recursion does not com-

plete only if there can be a cycle in the state graph that involves ports

and transit receive rights. In [BS94b] we specify that in a legal kernel

state there are no such cycles. For example, port p1 may not contain a

message that carries a receive right for port p2 if p2 contains a message

that carries a receive right for port p1. Without this requirement on a

legal state, an implementation of port termination would have to check

for cycles in the state graph to avoid in�nite recursion.

In the presence of concurrency in a kernel computation, it is possible

for two processes to collaborate to extend this recursion inde�nitely, or

at least until memory resources are exhausted. Suppose that process

A terminates port p1. In parallel, process B executes a loop in which it

successively creates port pi and sends the receive right of port pi�1 to

pi. Process A's call to Terminate-Port may be interleaved with process

B in such a way as to cause Terminate-Port to follow an arbitrarily long

sequence of recursive calls.

The above scenario may be extremly unlikely. However, it serves to

illustrate the point that the length of an entity termination computation

may depend on concurrent activity. On a system with inexhaustible

resources, it is conceivable that entity termination may not complete.

140

Bibliography

[BS94a] William R. Bevier and Lawrence M. Smith. A mathematical

model of the Mach kernel. Technical Report 102, Computa-

tional Logic, Inc., December 1994.

[BS94b] William R. Bevier and Lawrence M. Smith. A mathematical

model of the Mach kernel: Entities and relations. Technical

Report 88, Computational Logic, Inc., December 1994.

[Loe91] Keith Loepere. Mach 3 kernel interface. Technical report,

Open Software Foundation, May 1991.

141

Index

All-Eventually-Allocated, 133

All-Eventually-Not-Allocated, 133

Allocate-Dead-Right, 125

Allocate-Receive-Right, 125

Allocate-Send-Right, 125

�, 4

Coalesce-Dead-Right, 125

Coalesce-Receive-Send-Right, 124

Coalesce-Right-Refcount-Pegged,

132

Coalesce-Send-Receive-Right, 124

Coalesce-Send-Right, 125

Coalesce-Send-Send-Right, 124

Coalesce-Send-Sr-Right, 124

Copy-Dead, 131

Copy-Send, 131

De-Coalesce-Dead-Right, 127

De-Coalesce-Receive-Sr-Right, 127

De-Coalesce-Send-Send-Right, 127

De-Coalesce-Send-Sr-Right, 127

Deallocate-Dead-Right, 128

Deallocate-Receive-Right, 128

Deallocate-Send-Right, 128

Extract-Dead-Right, 131

Extract-Destination, 22

Extract-Port-Right, 130

Extract-Reply, 22

Extract-Send-Right, 131

Extract-Va-Region, 133

Insert-In-Line-Data, 133

Insert-Out-Of-Line-Data, 134

Insert-Port-Right, 132

Insert-Receive-Right, 132

Insert-Reply-Port, 25

Insert-Send-Once-Right, 132

Insert-Send-Right, 132

Legal-Instr-Right, 129

Legal-Name-Instr-Right, 129

Legal-Name-Instr-Right-Deadok,

129

Mach-Msg-Bad-Message-Body, 13

Mach-Msg-Md-Error, 14

Mach-Msg-Noop, 10

Mach-Msg-Rcv-Failurep, 16

Mach-Msg-Rcv-Header-Error, 17

Mach-Msg-Rcv-Interrupted, 18

Mach-Msg-Rcv-Resource-Shortage,

18

Mach-Msg-Rcv-Successp, 15

Mach-Msg-Rcv-Timeout, 18

Mach-Msg-Rcvp, 11

Mach-Msg-Send-Failure-No-Rcvp,

11

Mach-Msg-Send-Failurep, 12

142

143

Mach-Msg-Send-Header-Error, 13

Mach-Msg-Send-Interrupted, 14

Mach-Msg-Send-Resource-Shortage,

15

Mach-Msg-Send-Success-Rcvp, 11

Mach-Msg-Send-Successp, 12

Mach-Msg-Send-Timeout, 14

Mach-Msg-Sendp, 11

Mach-Msgp, 10

Mach-Port-Allocate-Dead-Right,

29

Mach-Port-Allocate-Invalid-Task,

29

Mach-Port-Allocate-Invalid-Value,

29

Mach-Port-Allocate-Name-Exists,

31

Mach-Port-Allocate-Namep, 31

Mach-Port-Allocate-No-Space, 30

Mach-Port-Allocate-Port-Set, 29

Mach-Port-Allocate-Receive, 29

Mach-Port-Allocate-Resource-Shortage,

30

Mach-Port-Allocate-Success, 29

Mach-Port-Allocatep, 28

Mach-Port-Dead-Name-Typep, 66

Mach-Port-Deallocate-Invalid-Name,

33

Mach-Port-Deallocate-Invalid-Right,

33

Mach-Port-Deallocate-Invalid-Task,

33

Mach-Port-Deallocate-Success, 32

Mach-Port-Deallocatep, 32

Mach-Port-Destroy-Dead-Right,

35

Mach-Port-Destroy-Invalid-Name,

35

Mach-Port-Destroy-Invalid-Task,

35

Mach-Port-Destroy-Port-Right, 35

Mach-Port-Destroy-Port-Set, 35

Mach-Port-Destroy-Success, 34

Mach-Port-Destroyp, 34

Mach-Port-Extract-Right-Invalid-

Name, 37

Mach-Port-Extract-Right-Invalid-

Right, 37

Mach-Port-Extract-Right-Invalid-

Task, 37

Mach-Port-Extract-Right-Invalid-

Value, 37

Mach-Port-Extract-Right-Success,

37

Mach-Port-Extract-Rightp, 36

Mach-Port-Get-Dead-Name-Refs,

39

Mach-Port-Get-Port-Set-Refs, 39

Mach-Port-Get-Receive-Refs, 39

Mach-Port-Get-Refs-Invalid-Name,

40

Mach-Port-Get-Refs-Invalid-Right,

40

Mach-Port-Get-Refs-Invalid-Task,

40

Mach-Port-Get-Refs-Success, 39

Mach-Port-Get-Refsp, 38

Mach-Port-Get-Send-Once-Refs,

39

Mach-Port-Get-Send-Refs, 39

Mach-Port-Get-Set-Status-Invalid-

Name, 42

144

Mach-Port-Get-Set-Status-Invalid-

Right, 42

Mach-Port-Get-Set-Status-Invalid-

Task, 42

Mach-Port-Get-Set-Status-Resource-

Shortage, 42

Mach-Port-Get-Set-Status-Success,

41

Mach-Port-Get-Set-Statusp, 41

Mach-Port-Insert-Right-Invalid-

Capability, 45

Mach-Port-Insert-Right-Invalid-

Task, 45

Mach-Port-Insert-Right-Invalid-

Value, 45

Mach-Port-Insert-Right-Name-Exists,

45

Mach-Port-Insert-Right-Resource-

Shortage, 46

Mach-Port-Insert-Right-Right-Exists,

46

Mach-Port-Insert-Right-Send-Once-

Name-Exists, 45

Mach-Port-Insert-Right-Sr-Name-

Exists, 45

Mach-Port-Insert-Right-Success,

44

Mach-Port-Insert-Right-Urefs-Overow,

45

Mach-Port-Insert-Rightp, 44

Mach-Port-Mod-Refs-Checks, 48

Mach-Port-Mod-Refs-Decrement,

49

Mach-Port-Mod-Refs-Decrement-

Dead-Namep, 49

Mach-Port-Mod-Refs-Decrement-

Port-Setp, 49

Mach-Port-Mod-Refs-Decrement-

Receivep, 49

Mach-Port-Mod-Refs-Decrement-

Send-Oncep, 49

Mach-Port-Mod-Refs-Decrement-

Sendp, 49

Mach-Port-Mod-Refs-Increment,

48

Mach-Port-Mod-Refs-Invalid-Dead-

Name-Value, 51

Mach-Port-Mod-Refs-Invalid-Name,

50

Mach-Port-Mod-Refs-Invalid-Port-

Set-Value, 51

Mach-Port-Mod-Refs-Invalid-Receive-

Value, 51

Mach-Port-Mod-Refs-Invalid-Right,

50

Mach-Port-Mod-Refs-Invalid-Send-

Once-Value, 51

Mach-Port-Mod-Refs-Invalid-Send-

Receive-Value, 50

Mach-Port-Mod-Refs-Invalid-Send-

Value, 50

Mach-Port-Mod-Refs-Invalid-Task,

50

Mach-Port-Mod-Refs-Invalid-Value,

50

Mach-Port-Mod-Refs-Overow-Dead-

Namep, 51

Mach-Port-Mod-Refs-Overow-Sendp,

51

Mach-Port-Mod-Refs-Success, 48

Mach-Port-Mod-Refs-Urefs-Overow,

51

Mach-Port-Mod-Refsp, 47

Mach-Port-Move-Member-Into, 53

145

Mach-Port-Move-Member-Invalid-

Name, 53

Mach-Port-Move-Member-Invalid-

Right, 53

Mach-Port-Move-Member-Invalid-

Task, 53

Mach-Port-Move-Member-Not-In-

Setp, 53

Mach-Port-Move-Member-Out-Of,

53

Mach-Port-Move-Member-Success,

52

Mach-Port-Move-Memberp, 52

Mach-Port-Names-Invalid-Task, 55

Mach-Port-Names-Resource-Shortage,

55

Mach-Port-Names-Success, 55

Mach-Port-Namesp, 54

Mach-Port-Port-Name-Typep, 66

Mach-Port-Port-Set-Typep, 66

Mach-Port-Rename-Dead-Namep,

57

Mach-Port-Rename-Invalid-Name,

57

Mach-Port-Rename-Invalid-Task,

57

Mach-Port-Rename-Invalid-Value,

57

Mach-Port-Rename-Name-Exists,

57

Mach-Port-Rename-Port-Rightp,

57

Mach-Port-Rename-Port-Set-Namep,

57

Mach-Port-Rename-Resource-Shortage,

57

Mach-Port-Rename-Success, 56

Mach-Port-Renamep, 56

Mach-Port-Request-Noti�cation-

Dead-Name, 59

Mach-Port-Request-Noti�cation-

Dead-Name-Cancel, 60

Mach-Port-Request-Noti�cation-

Dead-Name-Register, 59

Mach-Port-Request-Noti�cation-

Invalid-Argumentp, 61

Mach-Port-Request-Noti�cation-

Invalid-Capability, 61

Mach-Port-Request-Noti�cation-

Invalid-Name, 61

Mach-Port-Request-Noti�cation-

Invalid-Right, 61

Mach-Port-Request-Noti�cation-

Invalid-Task, 61

Mach-Port-Request-Noti�cation-

Invalid-Value, 61

Mach-Port-Request-Noti�cation-

No-Senders, 60

Mach-Port-Request-Noti�cation-

No-Senders-Cancel, 60

Mach-Port-Request-Noti�cation-

No-Senders-Register, 60

Mach-Port-Request-Noti�cation-

Resource-Shortage, 62

Mach-Port-Request-Noti�cation-

Success, 59

Mach-Port-Request-Noti�cation-

Urefs-Overow, 61

Mach-Port-Request-Noti�cationp,

59

Mach-Port-Set-Qlimit-Invalid-Name,

64

Mach-Port-Set-Qlimit-Invalid-Right,

64

146

Mach-Port-Set-Qlimit-Invalid-Task,

64

Mach-Port-Set-Qlimit-Invalid-Value,

64

Mach-Port-Set-Qlimit-Success, 64

Mach-Port-Set-Qlimitp, 63

Mach-Port-Type-Invalid-Name, 66

Mach-Port-Type-Invalid-Task, 66

Mach-Port-Type-Success, 65

Mach-Port-Typep, 65

Mach-Rcv-In-Port-Setp, 17

Mach-Rcv-Invalid-Namep, 17

Mach-Rcv-Port-Changedp, 17

Mach-Rcv-Port-Diedp, 17

Mach-Reply-Portp, 67

Mach-Send-Invalid-Dest-Portp, 13

Mach-Send-Invalid-Header-Types,

13

Mach-Send-Invalid-Reply-Portp,

13

Mach-Task-Self-Found, 108

Mach-Task-Selfp, 108

Mach-Thread-Self-Found, 98

Mach-Thread-Self-Success, 98

Make-Send, 131

Make-Send-Once, 131

Md-Datap, 19

Md-El-To-Messagep, 20

Md-Exists-Invalid-Memory, 14

Md-Exists-Invalid-Right, 14

Md-In-Line-No-Delete-To-Messagep,

23

Md-Memories-To-Messagep, 23

Md-Nullp, 19

Md-Nulls-To-Messagep, 21

Md-Out-Of-Line-Delete-To-Messagep,

23

Md-Out-Of-Line-No-Delete-To-Messagep,

23

Md-Rightp, 19

Md-Rights-To-Messagep, 21

Md-To-Messagep, 20

Mdp, 19

message bu�er, 7, 10, 18

message descriptor, 8, 10, 18

Message-Dequeuedp, 16

Message-Is-Constructed, 12

Message-Is-Queuedp, 12

Message-Memory-To-Md-Elp, 25

Message-Null-To-Md-Elp, 24

Message-Right-To-Md-Elp, 25

Message-To-Md-Elp, 24

Message-To-Mdp, 24

Move-Dead, 131

Move-Receive, 130

Move-Send, 130

Move-Send-Once, 130

Names-Receiving-Port, 22

New-Dead-Right, 124

New-Port-Set, 124

New-Receive-Right, 123

New-Send-Once-Right, 123

New-Send-Right, 123

Port-Is-Message-Reply-Port, 16

rc, 4

Remove-Dead-Right, 126

Remove-Port-Set-Name, 126

Remove-Receive-Right, 126

Remove-Send-Once-Right, 126

Remove-Send-Right, 126

Task-Bport-Initialized, 110

147

Task-Create-Invalid-Arg, 112

Task-Create-Resource-Shortage,

112

Task-Create-Success, 109

Task-Createp, 109

Task-Eport-Initialized, 110

Task-Get-Special-Kernel-Port-Success,

114

Task-Get-Special-Port-Failure, 113

Task-Get-Special-Port-Invalid-Arg,

114

Task-Get-Special-Port-Success, 114

Task-Get-Special-Portp, 113

Task-Get-Special-Portp-Bootstrap,

114

Task-Get-Special-Portp-Exception,

114

Task-Initialized, 110

Task-Memory-Copy, 112

Task-Memory-Inherited, 111

Task-Memory-None, 111

Task-Memory-Not-Inherited, 112

Task-Memory-Share, 111

Task-Procset-Inherited, 112

Task-Self-Created, 110

Task-Set-Special-Bootstrap-Port-

Success, 116

Task-Set-Special-Kernel-Port-Success,

116

Task-Set-Special-Port-Failure, 116

Task-Set-Special-Port-Invalid-Arg,

116

Task-Set-Special-Port-Success, 116

Task-Set-Special-Portp, 115

Task-Set-Special-Portp-Exception,

116

Task-Terminate-Failure, 118

Task-Terminate-Invalid-Arg, 118

Task-Terminate-Success, 118

Task-Terminatep, 117

Task-Threads-Resource-Shortage,

120

Task-Threadsp, 119

Task-Threadsp-Failure, 120

Task-Threadsp-Invalid-Argument,

120

Task-Threadsp-Success, 119

Terminate-Device, 139

Terminate-Memory, 138

Terminate-Message, 138

Terminate-Page, 138

Terminate-Port, 138

Terminate-Proc, 139

Terminate-Procset, 139

Terminate-Task, 137

Terminate-Thread, 137

Thread-Create-Failure, 100

Thread-Create-Invalid-Argument,

100

Thread-Create-Resource-Shortage,

100

Thread-Create-Success, 99

Thread-Createp, 99

Thread-Get-Special-Port-Exception-

Port, 102

Thread-Get-Special-Port-Exception-

Port1, 102

Thread-Get-Special-Port-Failure,

102

Thread-Get-Special-Port-Invalid-

Argument, 102

Thread-Get-Special-Port-Kernel-

Port, 102

148

Thread-Get-Special-Port-Kernel-

Port1, 102

Thread-Get-Special-Port-Success,

101

Thread-Get-Special-Portp, 101

Thread-Initialized, 100

Thread-Initialized-Eport, 100

Thread-Initialized-Procset, 100

Thread-Initialized-Self-Port, 100

Thread-Set-Special-Port-Exception-

Port, 104

Thread-Set-Special-Port-Exception-

Port1, 104

Thread-Set-Special-Port-Failure,

104

Thread-Set-Special-Port-Invalid-

Argument, 104

Thread-Set-Special-Port-Kernel-

Port, 104

Thread-Set-Special-Port-Kernel-

Port1, 104

Thread-Set-Special-Port-Success,

104

Thread-Set-Special-Portp, 103

Thread-Terminate-Failure, 106

Thread-Terminate-Invalid-Argument,

106

Thread-Terminate-Success, 105

Thread-Terminatep, 105

Va-Region-To-Messagep, 23

Vm-Allocate-Invalid-Address, 72

Vm-Allocate-Invalid-Argument, 72

Vm-Allocate-No-Space, 72

Vm-Allocate-No-Space-Anywherep,

73

Vm-Allocate-No-Space-Herep, 72

Vm-Allocate-Success, 71

Vm-Allocate-Zero-Mapped-Memoryp,

72

Vm-Allocatep, 70

Vm-Copy-Invalid-Address, 75

Vm-Copy-Invalid-Argument, 75

Vm-Copy-Protection-Failure, 76

Vm-Copy-Success, 75

Vm-Copyp, 74

Vm-Deallocate-Invalid-Address, 78

Vm-Deallocate-Invalid-Argument,

78

Vm-Deallocate-Success, 78

Vm-Deallocatep, 77

Vm-Inherit-Invalid-Address, 80

Vm-Inherit-Invalid-Argument, 80

Vm-Inherit-Success, 79

Vm-Inheritp, 79

Vm-Map-Invalid-Argument, 85

Vm-Map-Memory-Select-Copyp,

84

Vm-Map-Memory-Select-Nullnamep,

83

Vm-Map-Memory-Select-S-Rightp,

83

Vm-Map-Memory-Selectp, 83

Vm-Map-No-Space, 85

Vm-Map-No-Space-Anywherep, 85

Vm-Map-No-Space-Herep, 85

Vm-Map-Success, 82

Vm-Map-Va2-Selectp, 82

Vm-Mapp, 82

Vm-Protect-Currentp, 87

Vm-Protect-Invalid-Address, 88

Vm-Protect-Invalid-Argument, 87

Vm-Protect-Maximump, 87

Vm-Protect-Protection-Failure, 88

149

Vm-Protect-Success, 87

Vm-Protectp, 86

Vm-Read-Invalid-Address, 91

Vm-Read-Invalid-Argument, 90

Vm-Read-No-Space, 91

Vm-Read-Protection-Failure, 91

Vm-Read-Success, 90

Vm-Readp, 89

Vm-Region-Invalid-Argument, 94

Vm-Region-Name-Port-Selected,

94

Vm-Region-Next, 93

Vm-Region-No-Space, 94

Vm-Region-Outputs, 93

Vm-Region-Range, 93

Vm-Region-Shared-Flag-Set, 94

Vm-Region-Success, 93

Vm-Region-Within, 93

Vm-Regionp, 92

Vm-Write-Invalid-Address, 96

Vm-Write-Invalid-Argument, 96

Vm-Write-Protection-Failure, 96

Vm-Write-Success, 96

Vm-Writep, 95

