
A Mathematical Model of the Mach

Kernel

William R. Bevier and Lawrence M. Smith

Technical Report 102 December, 1994

Computational Logic, Inc.

1717 West Sixth Street, Suite 290

Austin, Texas 78703-4776

TEL: +1 512 322 9951

FAX: +1 512 322 0656

EMAIL: bevier@cli.com, lsmith@cli.com.

Copyright c
 2004 Computational Logic, Inc.

Abstract

This report gives an overview of a mathematical speci�cation for the Mach

kernel, version 3.0. The speci�cation describes a legal Mach kernel state and

requirements on kernel requests. The speci�cation admits implementations

in which kernel requests execute concurrently. This is important since Mach

is designed to run on multi-processor systems. The speci�cation technique

can be applied to other kernels, and to object-oriented systems in general.

i

Contents

1 Introduction 1

2 Notation 2

2.1 Symbols . 2

2.2 Declarations . 3

3 A Legal Mach Kernel State 5

3.1 Mach Entities . 5

3.2 Threads and Tasks . 6

3.3 Port Rights . 7

3.4 Special Purpose Ports . 10

3.5 Comments on the Legal State Speci�cation 12

3.6 Implementations of Mach Relations 13

4 Kernel Request Speci�cations 13

4.1 Kernel Behaviors . 13

4.2 Temporal Logic . 15

4.3 Speci�cation Example . 19

4.4 Comments on Kernel Request Speci�cations 23

5 Conclusion 24

1

1 Introduction

Mach [Ras86] is an operating system kernel that has been under development

for a number of years, primarily at Carnegie-Mellon University. It is not a

fully functional operating system. It implements a few basic abstractions like

task, thread, message and port. Usable operating systems are built on top of

the Mach kernel in terms of these abstractions. We have written a detailed,

partial speci�cation for the functional behavior of the Mach kernel, version

3.0. The purpose of this report is to present our approach to specifying the

kernel.

We have several goals in doing this work. The �rst is simply to pro-

vide mathematically precise documentation. As documentation, this report

supplements existing sources [Loe91b], [Loe91a]. In them, Keith Loepere

writes:

Although it is a goal of the Mach kernel to minimize abstrac-

tions provided by the kernel, it is not a goal to be minimal in the

semantics associated with those abstractions. As such, each of

the abstractions provided has a rich set of semantics associated

with it, and a complex set of interactions with other abstractions.

| [Loe91b], pg 2.

This is an accurate characterization of the microkernel architecture. We

believe that our mathematical formulation clari�es the essential features of

Mach by precisely de�ning required behavior of the kernel interface, and

ignoring implementation issues. Of course, by leaving out implementation

issues we leave out much of what is interesting about Mach.

Our second goal is to begin the process of de�ning a contract between

Mach users and implementors. It would be a bene�t to the Mach community

if an unambiguous statement of the required features of a Mach implemen-

tation were available. Programs which use only these features would be

completely portable. This would make possible program portability at a

high level of abstraction.

Our third goal is to enable the formal speci�cation and proof of cor-

rectness of applications programs which run on Mach, and of programs and

hardware which implement Mach.

2

The speci�cation admits implementations in which kernel requests exe-

cute concurrently. This is important since Mach is designed to run on multi-

processor systems. Allowing for this concurrency introduces some complexity.

The speci�cation includes the following elements.

Legal Kernel State. We introduce the classes of entities that exist in the

kernel, relations in which members of the entity classes may participate,

and axioms about those relations. The legal state model suggests a

collection of �ne-grained atomic actions in terms of which the actions

of kernel requests may be understood.

Speci�cations for Kernel Requests. A kernel request is modeled as a se-

quence of kernel states. A speci�cation for a request is a predicate that

de�nes a set of permitted behaviors. We use a temporal logic to write

these speci�cations, primarily to give the partially ordered set of events

which must take place during a kernel request.

Section 2 describes notational conventions. Section 3 introduces the legal

state model with examples. Section 4 presents our approach to specifying

kernel requests. Details of the speci�cation can be found in two technical

reports: [BS94a] and [BS94b].

2 Notation

2.1 Symbols

N the set of natural numbers

= equality

� subset

\ set intersection

2 set membership

: negation

^ conjunction

_ disjunction

! implication

$ bi-implication

3

9 existential quanti�cation

8 universal quanti�cation

+;�; �;� arithmetic operations on natural numbers

E.g., 5� 2 = 3, but 2� 5 = 0. Also, 7 � 2 = 3

<;�; >;� inequalities on natural numbers

ha; b; ci a tuple

fa; b; cg a set

ident a constant

'ident a scalar constant

2.2 Declarations

We specify Mach by introducing functions and predicates that represent

Mach concepts, and by stating axioms about them. We introduce a new

function symbol in a number of ways. A de�ned function is introduced as

follows.

De�nition 2.1

f (x , y) � g (x , y)

Here, f is a new function symbol and g is an expression on f's arguments

involving only previously de�ned functions.

When we intend only to partially specify a new function symbol, we in-

troduce it with a sequence of declarations. The following form declares a new

function symbol and the names of its formal parameters. This information

determines the function's arity, that is, the number of its parameters.

Function 2.2

f (x , y)

Subsequent axioms state assumptions about a function symbol, as in the

following example. Sometimes we omit the printing of the function declara-

tion, and let an axiom suÆce to introduce a new function.

Axiom 2.3

p (x , y , z) ! (f (x , y) = z)

4

Some function symbols are predicates, i.e., functions whose range is the

set of boolean values ftrue; falseg. Certain predicates have particular promi-

nence. A relation is a predicate on several arguments, the last of which is

a state variable s. In the Mach speci�cation, a relation holds on elements

of one or more Mach entity classes, and optional additional parameters from

other data types. We declare such a predicate in the following way.

Relation 2.4

p (x , y , s) where

q (x , s) ^ r (y , s)

This declaration introduces a new relation p along with the axiom

p (x; y; s) = true _ p (x; y; s) = false:

The expression q (x , s) ^ r (y , s) can be thought of as a guard. The guard

de�nes some necessary conditions for the relation p to hold; it introduces the

axiom

:(q (x; s) ^ r (y; s))! :p (x; y; s):

While the guard can be an arbitrary predicate on the parameters to p, we

typically write only elementary requirements. In our usage the guard looks

like a signature, an expression which states the types of the parameters.

A set of parameters may be a key. As in database terminology, a key

determines the other parameters of any instance of a relation. We indicate

the members of a key with underlining. The state variable is a part of every

key; we refrain from underlining it. For the above example, the following

axiom is introduced for the key y .

p (x1; y; s) ^ p (x2; y; s) ! x1 = x2

A relation may have more than one key. When there are two keys, we

indicate the second key with overlining. The Mach speci�cation currently

has no relation with more than two keys.

Useful speci�cation functions may be derived from a relation. In the

relation p above, y is a key. That is, in a given state, a single x value may

be p-related to multiple y values. This suggests the following speci�cation

functions. The predicate exists-x-related-to-y holds if some x is related to y

in state s. If so, the function x-related-to-y gives the unique x related to y .

The function all-ys-related-to-x is the set of y values p-related to x in state

s.

5

De�nition 2.5

exists-x-related-to-y (y , s) � 9 x : p (x , y , s)

Axiom 2.6

exists-x-related-to-y (y , s) ! (p (x-related-to-y (y , s), y , s))

Axiom 2.7

q (x , s) ! (y 2 all-ys-related-to-x (x , s) $ p (x , y , s))

3 A Legal Mach Kernel State

3.1 Mach Entities

The de�nition of each Mach concept involves a state variable s. One thinks

of a Mach property as holding in a given state. A Mach kernel state contains

entities from the following disjoint classes: tasks, threads, ports, messages,

memories, pages, processors, processor sets, and devices.

A task is the unit of resource allocation. A task holds access to message

ports and to memory. A task may contain one or more threads. A thread

represents a
ow of control within a task. One thinks of a thread as a pro-

gram counter together with local cpu state. All threads share the resources

allocated to the task in which they are contained. A port is container of

messages. A task may hold the right to send a message to a port, and/or

to receive a message from a port. A message is a unit of information which

can be passed between two tasks. Messages can be used to pass data, and

to pass rights to ports. An abstract memory, or just memory, is a unit of

data. An abstract memory has roughly the semantics of a Unix �le: it is a

mapping from o�sets to words. A task cannot access a memory directly|i.e.,

via a machine instruction. It can only directly access the contents of a page.

A page is the unit of physical memory. A page is a �xed-size sequence of

words. A task accesses a page via a virtual address. The primary purpose

of a page is to hold a snapshot of some segment of an abstract memory. A

processor is a hardware instruction interpreter. A processor set is a collection

of processors. A device is one of a number of types of peripheral hardware.

We write taskp (x; s) to say that x is a task in state s. We call taskp

a recognizer because it recognizes an element of one of the distinguished

classes. The names of the other recognizers are threadp, portp, messagep,

6

memoryp, pagep, procp, procsetp and devicep. Here is the axiom that taskp

may not recognize a member of any of the other entity classes. A analogous

constraint applies to the other recognizers.

Axiom 3.1

taskp (x , s)

! : threadp (x , s)

^ : portp (x , s)

^ : messagep (x , s)

^ : memoryp (x , s)

^ : pagep (x , s)

^ : procp (x , s)

^ : procsetp (x , s)

^ : devicep (x , s)

In Mach, the kernel is viewed as a task. We introduce the constant

kernel to represent the kernel task.

Axiom 3.2

taskp (kernel, s)

3.2 Threads and Tasks

A task contains zero or more threads. The relation task-thread-rel associates

a thread with a task. A thread belongs to at most one task.1 The predicate

exists-owning-task holds when a thread has an owning task, and owning-task

identi�es that task when such an assignment exists. The function threads is

the set of threads associated with a task.

Relation 3.3

task-thread-rel (t, th, s) where

taskp (t, s) ^ threadp (th, s)

De�nition 3.4

exists-owning-task (th, s) � 9 t: task-thread-rel (t, th, s)

1cf. [Loe91b], pg. 8

7

Axiom 3.5

exists-owning-task (th, s) ! task-thread-rel (owning-task (th, s), th, s)

Axiom 3.6

taskp (t, s) ! (th 2 threads (t, s) $ task-thread-rel (t, th, s))

As a result of these axioms, we can conclude that any element of the value

of the function threads must be a thread.

Theorem 3.7

taskp (t, s) ^ th 2 threads (t, s) ! threadp (th, s)

3.3 Port Rights

Let N be a set. N is a set of names used to identify capabilities on ports.

A task has access to a port only via a name in N . We assume the existence

of two distinguished names nullname 2 N , and deadname 2N .

There are three access rights which a task can have on a port.2 R is the

set of port access rights.

De�nition 3.8

R � f'send, 'receive, 'send-onceg

A port right identi�es a task's name for a port, and what by rights the

task may access the port. In port-right-rel, t is a task, p is a port, n is a

name and R is a non-empty subset of R. The port right parameter i can be

thought of as representing the number of times a given port right has been

granted to a task. This value is called the reference count of the port right.

In any sequence of states, the value of i is the number of times the right has

been granted minus the number of times the right has been revoked. The

reference count of a port right is a non-zero natural number less than the

constant max-refcount.

A task and name determine the port in a port right relation, the set of

rights held to it, and the reference count of the right. The predicate port-

right-namep recognizes a task t and name n that represent a port right. The

function named-port identi�es the port to which task t holds a right by name

2cf. [Loe91b], pg. 28

8

n. The function port-rights identi�es the set of rights that task t holds to a

port by name n. The function port-right-refcount is the reference count of a

port right.

Relation 3.9

port-right-rel (t, p, n, R, i , s) where

taskp (t, s)

^ portp (p, s)

^ (n 2 N)

^ (R � R)

^ (0 < i < max-refcount)

De�nition 3.10

port-right-namep (t, n, s) � 9 p, R, i : port-right-rel (t, p, n, R, i , s)

Axiom 3.11

port-right-namep (t, n, s)

! port-right-rel (t, named-port (t, n, s), n, port-rights (t, n, s),

port-right-refcount (t, n, s), s)

Neither nullname nor deadname may serve as the name for a port

right. The set of rights in a port right may not be empty.

Axiom 3.12

(n = nullname) _ (n = deadname) ! : port-right-rel (t, p, n, R, i , s)

Axiom 3.13

: port-right-rel (t, p, n, ;, i , s)

The reference count of a receive or send-once port right is exactly 1. A

send right can have multiple references.

Axiom 3.14

port-right-rel (t, p, n, f'receiveg, i , s) ! (i = 1)

Axiom 3.15

port-right-rel (t, p, n, f'send-onceg, i , s) ! (i = 1)

9

Axiom 3.16

port-right-rel (t, p, n, R, i , s) ^ (R = f'send, 'receiveg) ! 2 � i

The predicate s-right holds on a task and a name in state s if and only

if the name represents a send right in the task. The predicates r-right and

so-right recognize names which represent receive and send-once rights, re-

spectively, for a given task.

De�nition 3.17

s-right (t, n, s) � port-right-namep (t, n, s) ^ 'send 2 port-rights (t, n, s)

De�nition 3.18

r-right (t, n, s)

� port-right-namep (t, n, s) ^ 'receive 2 port-rights (t, n, s)

De�nition 3.19

so-right (t, n, s)

� port-right-namep (t, n, s) ^ 'send-once 2 port-rights (t, n, s)

A task has only one name for a send or receive right to a given port.3

This is called name coalescing.

Axiom 3.20

s-right (t, n1, s)

^ s-right (t, n2, s)

^ (named-port (t, n1, s) = named-port (t, n2, s))

! (n1 = n2)

Axiom 3.21

s-right (t, n1, s)

^ r-right (t, n2, s)

^ (named-port (t, n1, s) = named-port (t, n2, s))

! (n1 = n2)

Axiom 3.22

r-right (t, n1, s)

^ r-right (t, n2, s)

^ (named-port (t, n1, s) = named-port (t, n2, s))

! (n1 = n2)

3cf. [Loe91b], pg. 30

10

While send and receive rights to a port coalesce in a single name, a send-

once right does not combine with others.4 A task holding multiple send-once

rights to a given port must hold them with distinct names.

Axiom 3.23

so-right (t, n, s) ! : r-right (t, n, s) ^ : s-right (t, n, s)

At most one task can have a receive right on a port.5

Axiom 3.24

r-right (t1, n1, s)

^ r-right (t2, n2, s)

^ (named-port (t1, n1, s) = named-port (t2, n2, s))

! (t1 = t2)

From the name coalescing property of receive rights, one can prove that n1

= n2 in the constraint above.

The identity of a port's receiver is a function of a port and a state s. We

call this partial function receiver. The name by which a port's receive right

is known to the receiver is given by receiver-name.

De�nition 3.25

exists-receiver (p, s) � 9 t, n: r-right (t, n, s) ^ (named-port (t, n, s) = p)

Axiom 3.26

exists-receiver (p, s)

! r-right (receiver (p, s), receiver-name (p, s), s)

^ (named-port (receiver (p, s), receiver-name (p, s), s) = p)

3.4 Special Purpose Ports

The kernel assigns special meaning to some of its ports. Many of the special

ports are used to make service requests on the kernel. The kernel holds the

receive right on these ports. In other cases, the kernel holds a send right

on a port, allowing it to asynchronously provide information to a user task.

4cf. [Loe91b], pg. 30
5cf. [Loe91b], pg. 25

11

There are other special ports to which the kernel has no rights. These port

relations are maintained by the kernel in support of higher-level protocols.

A task may be associated with four special ports. A task self port (also

called a task kernel port) identi�es a task to the kernel and is used to perform

actions in behalf of a task. The task exception port is used by the kernel to

convey information about exceptions. The task bootstrap port is typically

used for locating services. A task's sself port typically is identical to its self

port. When task A's sself port di�ers from its self port, a debugging task

holds a receive right on the sself port. The debugging task is said to interpose

between the kernel and task A.

Relation 3.27

task-self-rel (t, p, s) where

taskp (t, s) ^ portp (p, s)

Relation 3.28

task-eport-rel (t, p, s) where

taskp (t, s) ^ portp (p, s)

Relation 3.29

task-bport-rel (t, p, s) where

taskp (t, s) ^ portp (p, s)

Relation 3.30

task-sself-rel (t, p, s) where

taskp (t, s) ^ portp (p, s)

The special ports of a task are unique. Additionally, a task's self port is

related to only one task. We introduce the function task-self to be the self

port associated with a task. The other kinds of task special ports need not be

related to only one task. The functions task-eport, task-bport, and task-sself

have axioms analogous to task-self.

Axiom 3.31

task-self-rel (t, p, s) ! (task-self (t, s) = p)

Only the kernel task may hold a receive right to a task self port.

Axiom 3.32

task-self-rel (t, p, s) ^ exists-receiver (p, s) ! (receiver (p, s) = kernel)

12

3.5 Comments on the Legal State Speci�cation

This concludes examples of Mach kernel state speci�cations. We have de-

scribed just enough to make intelligible an example speci�cation for a kernel

request in Section 4. Currently our Mach requirements include about �fty

relations on elements of the entity classes, and a large number of axioms on

these relations. We believe that this is an accurate but incomplete set of

requirements on a legal Mach state. More relations and constraints may be

added after further investigation and public review.

A legal Mach kernel state recognizer can be de�ned from the complete set

of axioms. For each axiom, construct a formula in which every free variable

except s is universally quanti�ed, so that s is the only parameter to the

formula. Call this the closure of the axiom. A legal Mach state can be

de�ned as the conjunction of the closures of the axioms.

De�nition 3.33

legal state(s) � 8 x (taskp (x; s) ! :threadp (x; s)) ^ : : :

A Mach kernel state can be visualized as a graph. An entity is a node.

A relation is either a link between two nodes (possibly annotated with at-

tributes), or is a line dangling from a single node in the case of a relation

that involves a member of only one entity class. An example of the latter

is the relation dead right, which relates a task to a dead name in its name

space.

If task t owns thread th, we imagine the following to be a part of the

current state graph.

��
��
t ��

��
th

task thread

If task t holds a send right to port p, the following annotated link may occur

in the state graph.

��
��
t ��

��
p

port right

(n,fsendg,1)

13

The graph view of the Mach kernel state model suggests the following

classi�cation of atomic kernel actions.

� Creation of a node (i.e., allocation of an entity).

� Destruction of an unconnected node (deallocation of an entity).

� Creation of a link (assertion of a relation)

� Destruction of a link (dis-assertion of a relation).

� Modi�cation of a link attribute.

These classes identify the �nest granularity step which have meaning in Mach.

We believe that a Mach implementation which makes this interface explicit

would be simpler to code and to understand. We use this level of granularity

in writing temporal speci�cations for kernel requests.

3.6 Implementations of Mach Relations

There is a straightforward implementation of each kernel relation in the C

implementation of Mach. The entity recognizers are implemented by the

addresses of C data structures. For example, taskp (x; s) holds if one inter-

prets s as the memory occupied by the kernel, and x as the address of a task

structure as de�ned by the C code. The C structures which implement the

other entity classes are thread, ipc port, ipc kmsg (a message), vm object

(an abstract memory), vm page, processor, processor set, and device.

Task-thread-rel (t, th, s) is implemented by the task �eld of a thread

structure. That is, when the task �eld of thread th equals t, then thread

ownership is established in state s. A task contains a header to a linked list

of threads owned by the task. This suggests the implementation invariant

that the task �eld of a thread th must point to the task in whose thread list

th is linked.

4 Kernel Request Speci�cations

4.1 Kernel Behaviors

We have speci�ed a subset of the kernel requests described in the Mach kernel

interface manual [Loe91a]. The implementation of a kernel request is modeled

14

call compute return

as a behavior, which is a sequence s0
�1�! s1

�2�! s2 : : :
�k�! sk where each si

is a state and each ai is an agent (see below). Each state in a behavior is

produced from its immediate predecessor by an atomic action. This execution

model is compatible with state-based formalisms for concurrent computation

like TLA [Lam91] and Unity [CM88].

Associated with each state in a kernel behavior is an agent identi�er. This

identi�er names the entity responsible for creating the corresponding state

from the previous one in the behavior.6 We think of the agent as the entity

in whose behalf a kernel behavior takes place, so that the steps involved in

a single thread of kernel behavior, and only those steps, are labeled with the

same agent.

From the point of view of a calling task we may divide a kernel behav-

ior into three phases: asynchronous call, internal computation, and asyn-

chronous return.

Concurrent steps in behalf of other agents may occur in each of these

three phases. The steps associated with two distinct interleaved kernel be-

haviors have di�erent agents. Some kernel services are implemented with

both synchronous and asynchronous interfaces. In a synchronous interface,

there is no concurrency in the call and return phases. A few kernel services

have only a synchronous interface. We ignore the exceptions, and specify

only the general case in which concurrency may occur in all phases. The

resulting speci�cations apply to the synchronous interfaces as well, but are

somewhat weaker than necessary.

6By entity, we do not necessarily mean a kernel entity, but a more abstract notion of

the name of the service invoker. If one must be concrete, one can think of the agent as

a stack of thread identi�ers constructed by remote procedure calls. The topmost element

of the stack is the identi�er of the thread executing in behalf of the next thread on the

stack, and so on.

15

There is very little that we can say about a kernel request in the state at

which the return phase terminates. Conditions which hold in the initial state

may be modi�ed by interfering concurrent behaviors. The kernel entities that

one expects a kernel service to operate on may disappear in each of the three

phases. In the compute phase, the kernel has most control since it may

lock the data structure that represents an entity, thus preventing (with the

cooperation of other kernel threads) modi�cations to its properties.

Because of the possibility of interfering concurrent kernel computations,

specifying a kernel request by stating pre-conditions and post-conditions is

inadequate. Such an approach prohibits many computations that we want

to consider legal. Instead, we use temporal logic to write predicates that

describe legal implementations of kernel requests.

4.2 Temporal Logic

A behavior is speci�ed in terms of two kinds of properties: safety and liveness.

A safety property is one that is true of all states in a behavior. A liveness

property is one that eventually holds. These notions are expressed formally

in [AS85]. In the case of Mach, kernel behaviors do not cooperate to achieve

some result, they merely interfere with one another. We therefore expect

that a liveness speci�cation for a kernel behavior is a formula that mentions

at most one agent.

We use a temporal logic to express behavior speci�cations. The syntax

of a temporal logic includes application of temporal operators to state predi-

cates, and to other temporal predicates. The meaning of a temporal operator

can be de�ned in terms of quanti�cation over states in a behavior. For exam-

ple, the expression 3p, pronounced eventually p, is a predicate on a behavior

that says there exists a state in which p holds.

In the remainder of this section we informally summarize our temporal

logic. This logic is fairly standard. It is similar, for example, to that found

in [Pnu85]. The only novelty is that we use a notation which makes it easy

to specify the actions of particular agents.

State Terms

A state term is a term that has meaning in a kernel state. We build up state

terms from constants, variables and function application. Constants and

16

variables take values from underlying domains which include integers, sets,

symbols and sequences. Functions include equality (=), boolean connectives

(:, ^, _, !), bounded quanti�cation (8, 9), set operations (e.g., �, \, [),

and integer operations (e.g., +, -, �, �).

Most important for specifying the Mach kernel, the functions introduced

in the legal state model [BS94a] are included in the set of state functions.

Most of the functions introduced in [BS94a] are state functions. For example,

threads (see pg. 6 of this report) is a function on a state that returns the set

of threads associated with a given task. A state predicate is a boolean-valued

state function.

Within our temporal logic we omit the state variable from a state term.

The term taskp (x) is a state predicate that can be applied to any state in a

behavior.

Primitive Temporal Operators

We summarize our temporal logic with examples of the use of temporal op-

erators. A temporal term is a term in the logic whose main operator is one

of those discussed below. The unstated argument of a temporal term is a

behavior of the form
�0�! s0

�1�! s1
�2�! s2 : : :

�k�! sk. An �-state is the

resulting state of a step by agent �.

Now. Behavior � satis�es p i� p is a state predicate that holds in �'s �rst

state. � satis�es p[�] i� p holds in �'s �rst state and the �rst state is an

�-state. The empty behavior satis�es neither p nor p[�].

Next. If p is a state predicate, behavior � satis�es �p i� � has at least two

states and p holds in �'s second state.

Steady. Behavior � satis�es jx (the operator is pronounced steady) if x is

a state term whose value does not change in the �rst two states. A behavior

whose length is less than two satis�es jx . Behavior � satis�es jx [�] if x's

value is steady and the agent of the step into the second state is �.

Eventually. If p is a state predicate, behavior � satis�es 3p i� there exists

a state in � in which p holds.

17

Always. If p is a state predicate, behavior � satis�es 2p i� p holds in every

state of �.

Sequential Composition. If p and q are temporal terms, behavior � sat-

is�es p ; q if some initial subsequence of � satis�es p, and the remainder of

� satis�es q.

De�ned Temporal Operators

Assertion. A state predicate p is asserted by agent � in a behavior, written

"p[�], i� :p holds now, p holds in the next state, and the next state is an

�-state. We write 3"p[�] to say that � eventually asserts p. #p[�] is de�ned
to be " (:p)[�].

"p[�] � : p ^ (�(p[�]))

Interference. State term x is observes interference with respect to agent

� if the step into its second state is a �-step for some � 6= �, and x is

not steady. This is written yx [�]. We write 3yx [�] to say that interference

eventually occurs on x.7

yx [�] � : (�(t[�])) ^ : jx

Protection. A state predicate p is protected in a computation, written kp,
i� p is steady when p holds in the �rst state. p is �-protected, written kp[�],
if it is protected when the �rst step of the computation is an �-step.

kp � p ! jp

kp[�] � (�(t[�])) ! kp

These notions are most useful in combination with 2. A computation that

satis�es 2kp is one in which p stays true once it becomes true. We say that

p is stable. A computation that satis�es 2kp[�] is one in which agent � does

not dis-assert p if p ever becomes true.

7The notation �(t[�]) says that True holds in the second state and that this state is

an �-state.

18

Operator Precedence

The order of operator precedence is : followed by the set ", #, j and k,

followed by 3 and 2, followed by the logical connectives ^ and _. Thus, k:

p (x)[�] is the same as k (:p(x))[�]. 3p ^3q is the same as (3p) ^ (3q).

Common Patterns

The formula 3p ; 3q recognizes a behavior in which p eventually holds,

and q holds subsequently. This is the basic pattern for specifying an order

to events. When we want to specify that all of q1; q2; q3 happen after p, but

not give an order, we write 3p ; 3q1 ^3q2 ^3q3

Named Formulas

A temporal formula may be named. One understands a reference to a named

formula as a copy of the name's de�nition. For example, the two de�nitions

of formula1 below are identical.

De�nition 4.1

formula1 � q (x)[�] ^ formula2

De�nition 4.2

formula2 � 3"r (x)[�]

De�nition 4.3

formula1 � q (x)[�] ^ (3"r (x)[�])

We permit names to take arguments. An argument represents a term that

may be substituted for at \formula construction time". The two de�nitions

of formula3 below are identical.

De�nition 4.4

formula3 � (3q (x)[�]) ^ formula4 (f (x))

De�nition 4.5

formula4 (x) � 3"r (x)[�]

De�nition 4.6

formula3 � (3q (x)[�]) ^ (3"r (f (x))[�])

19

4.3 Speci�cation Example

A Mach kernel request is speci�ed by one or more temporal predicates. A

behavior that does not satisfy a service's speci�cation is not an implementa-

tion of the service. In this section, we discuss some patterns and conventions

in the kernel speci�cations.

In the Mach 3.0 implementation, an interface parameter that represents

an entity (e.g., the parent task in the task create example above), is in-

tended to be the caller's name for a port that represents the entity. This port

name is resolved to an entity pointer early in the computation. We assume

that this resolution has been performed. That is, the free variables denote

entities, not the names of ports that represent entities.

The interface to a kernel service is speci�ed in [Loe91a] by a C language

routine header. For example, the interface to the service task create is

described as follows.

kern return t task create (task t parent task,

boolean t inherit memory,

task t *child task)

The arguments are a parent task from whom the newly created task

inherits certain resources, an inherit memory
ag which governs whether or

not the new task inherits the parent's address space, and the returned child

task pointer. An implicit out parameter is a return code rc speci�ed by the

function type kern return t.

We specify task create with a temporal predicate Task-Createp that

recognizes an acceptable task create behavior. An interface parameter is

represented by a variable in the predicate. There is an additional variable in

each speci�cation: �, the agent of the request.

We follow the convention of printing the free variables in a bold font.

Other variables, introduced by quanti�cation, are not so printed. The func-

tion symbols of state terms are printed lower case. The function symbols of

temporal predicates are printed with partial capitalization.

PARAMETERS

t1. The parent task.

20

inh-
g. If inh-
g is True, the child's address space is inherited from the

parent according to inheritance values at each of the parent's allocated

virtual page addresses. Otherwise, the child's address space is empty.

t2. [out] The child task.

OUTCOMES

We specify three possible outcomes: success, invalid argument, or resource

shortage.

Task-Createp

� Task-Create-Success

_ Task-Create-Invalid-Arg

_ Task-Create-Resource-Shortage

SPECIFICATION

On a successful outcome, t1 is found to be a task, and the child task is

created and initialized.8

Task-Create-Success

� 3taskp (t1)[�]

; 3"taskp (t2)[�]
; Task-Initialized

; 3"(rc = 'kern-success)[�]

Initialization includes creation of several special ports, and inheritance of

the parent's address space and processor set.

Task-Initialized

� Task-Self-Created

^ Task-Bport-Initialized

^ Task-Eport-Initialized

^ (inh-
g['alpha] ! Task-Memory-Inherited)

^ ((: inh-
g)['alpha] ! Task-Memory-Not-Inherited)

^ Task-Procset-Inherited

8The form 3taskp (t1)[�] requires that an �-state is reached in which the parameter

t1 is a task. Intuitively, this requires a check to this e�ect. The form 3"taskp (t2)[�]

requires that t2 be created in an �-step.

21

A port is created and is made the child's self and sself ports.

Task-Self-Created

� 9 p 2 all-entities:

(3"portp (p)[�]

; 3"task-self-rel (t2, p)[�]

^ 3"task-sself-rel (t2, p)[�])

The child either inherits its parent's bootstrap port, or the parent is found

to have no bootstrap port, and so the child is assigned none. An analogous

speci�cation holds for the child's exception port.

Task-Bport-Initialized

� 9 p 2 all-entities:

(3task-bport-rel (t1, p)[�]

; 3"task-bport-rel (t2, p)[�])
_ (3(: exists-task-bport (t1))[�]

; 3(: exists-task-bport (t2))[�])

Task-Eport-Initialized

� 9 p 2 all-entities:

(3task-eport-rel (t1, p)[�]

; 3"task-eport-rel (t2, p)[�])

_ (3(: exists-task-eport (t1))[�]

; 3(: exists-task-eport (t2))[�])

If inh-
g=true, each allocated virtual page address (vpa) in the parent

task is allocated to the child according to the inheritance value associated

with the parent's vpa as follows.

None. This vpa is not allocated in the child. n

Share. The memory mapped into the parent's address space is mapped into

the child's at the same virtual address.

Copy. A copy of the memory mapped into the parent's address space is

mapped into the child's address space. A new, temporary memory is

created.

22

If a vpa is not allocated in the parent, then it is not allocated in the child.

Task-Memory-Inherited

� 8 0 � vpa < address-space-limit:

(page-aligned (vpa)[�]

! (3(: allocated (t1, vpa))[�]

; 3(: allocated (t2, vpa))[�])

_ Task-Memory-None (vpa)

_ Task-Memory-Share (vpa)

_ Task-Memory-Copy (vpa))

We omit the de�nitions of Task-Memory-None, Task-Memory-Share and

Task-Memory-Copy since they involve relations which formalize a task's ad-

dress space that we have not presented in this report.

If inh-
g =false, then no virtual addresses are allocated in the child.

Task-Memory-Not-Inherited

� 8 0 � va < address-space-limit: (3(: allocated (t2, va))[�])

The child is assigned to the parent's processor set if the parent has one,

otherwise the child is assigned to the default processor set.

Task-Procset-Inherited

� 9 procset 2 all-entities:

(3procset-task-rel (procset , t1)[�]

; 3"procset-task-rel (procset , t2)[�])

_ (3(: exists-task-assigned-procset (t1))[�]

; 9 procset 2 all-entities:

(3default-procset-rel (procset)[�]

; 3"procset-task-rel (procset , t2)[�]))

An invalid argument outcome occurs if t1 is discovered not to be a task.

Task-Create-Invalid-Arg

� 3(: taskp (t1))[�] ; 3"(rc = 'kern-invalid-arg)[�]

Task-Create-Resource-Shortage

� 3"(rc = 'kern-resource-shortage)[�]

23

4.4 Comments on Kernel Request Speci�cations

We have speci�ed approximately 40 kernel requests with this temporal logic,

including the complex mach msg send and mach msg receive. The speci�-

cations give primarily liveness requirements | actions that a request must

take | and the conditions under which they occur. These properties cor-

respond to the documented behavior for each kernel request in the interface

manual [Loe91a]. The length of the text required to present these formal

requirements does not greatly exceed the English-only text.

We have chosen to omit safety properties from the kernel request spec-

i�cations. Such properties capture what a kernel request may not do. For

example, task create should not change the port rights of any task other

than the created child task.

no-changed-port-rights

� 8 t 2 all-tasks, p 2 all-ports, n 2 N , r 2 R,

0 � i < ref-count-limit:

(t 6= t2 ! (2jport-right-rel (t, n, p, r , i)[�]))

A complete speci�cation should include such requirements. Lamport ar-

gues that these are best described with an abstract program [Lam89]. We've

excluded them in the interest of economy.

The liveness speci�cations capture much of the information contained in

the English language documentation. They formally describe a partial order-

ing of events and conditions that must occur during a kernel computation.

In the absence of interference (something that the kernel does not guarantee)

the kernel state properties asserted by an agent hold in the �nal state of a

computation. More precisely, one can conclude that property p holds in the

�nal state of a computation if p holds eventually, p is always protected by

agent �, and � observes no interference in property p. These conditions can

be expressed formally as follows.

3p ^ 2kp[�] ^ : (3yp[�])

For a given kernel computation and property p, the �rst of these conjuncts

follows from the liveness speci�cations that we give. The second follows

from unstated safety speci�cations - e.g., that once p is asserted, � does not

disassert it. The last conjunct relies on reasoning about the environment in

which the computation occurs.

24

5 Conclusion

The Mach 3.0 kernel speci�cation is derived from an existing implementation.

We constructed it by inspecting the documentation and source code for a

number of Mach 3.0 releases out of CMU. The speci�cation includes two

components: a formalization of a legal kernel state, and requirements on

kernel requests. The former is an abstract description of the architecture of

the system; it says what may exist in a kernel state. The latter describes the

dynamic behavior of the system.

The legal state speci�cation is based on a mathematical foundation of

�rst-order logic, set theory and arithmetic. The system architecture is de-

�ned by identifying classes of entities, and the relations in which they may

occur. This approach seems suitable for many object-oriented systems. The

kernel request speci�cation requires an additional mathematical foundation

of temporal logic. We have chosen to use a temporal logic to write a speci-

�cation that will admit concurrent implementations. The temporal logic we

have presented is a standard one. Similar notions can be found in [MP81],

[Pnu85], and [Lam91]. The only novelty in our temporal notation is the

prominence of agents.

We felt it important to express the speci�cation in as simple a logic as

possible. It does not depend on any particular existing speci�cation system or

tool. However, we believe that this speci�cation could easily be cast into any

number of them. We have gone to the e�ort of interpreting this speci�cation

in the logic of Nqthm, the Boyer-Moore theorem prover [BM88]. We have

used Nqthm to prove the consistency of the legal state speci�cation, and

to check the well-formedness of our kernel request speci�cations. Secure

Computing Corporation has transcribed the legal state requirements into

the Z notation [Spi89], and extended them for the purpose of specifying a

distributed, trusted version of Mach kernel [FMS93].

The legal state speci�cation suggests a �ne-grained set of atomic kernel

steps, namely, steps which assert or disassert instances of the primitive Mach

state relations described in [BS94a]. We believe that this is the �nest gran-

ularity of step that makes sense for Mach. [BS93] discusses atomicity and

locking issues in more detail.

In future work, we will apply this speci�cation approach to functional and

security requirements on servers running above the kernel. We will address

the problem of modeling kernel and server implementations so that we can

25

prove that the speci�cations are satis�ed.

We are currently working in collaboration with the Open Software Foun-

dation Research Institute to modify this speci�cation so that it applies to

their Mach++ design [Fou93]. The main goal of this project is to imple-

ment tests for compliance with the speci�cation. We hope that one result of

this project is that a mathematical kernel speci�cation will become a stan-

dard part of system documentation, and will be updated in concert with the

implementation and tests as the design evolves.

26

References

[AS85] Bowen Alpern and Fred B. Schneider. De�ning liveness. Informa-

tion Processing Letters, 21(4):181{185, October 1985.

[BM88] Robert S. Boyer and J Strother Moore. A Computational Logic

Handbook. Academic Press, Boston, 1988.

[BS93] William R. Bevier and Lawrence M. Smith. A mathematical model

of the Mach kernel: Atomic actions and locks. Technical Report 89,

Computational Logic, Inc., April 1993.

[BS94a] William R. Bevier and Lawrence M. Smith. A mathematical model

of the Mach kernel: Entities and relations. Technical Report 88,

Computational Logic, Inc., December 1994.

[BS94b] William R. Bevier and Lawrence M. Smith. A mathematical model

of the Mach kernel: Kernel requests. Technical Report 53, Compu-

tational Logic, Inc., December 1994.

[CM88] K. Mani Chandy and Jayadev Misra. Parallel Program Design, a

Foundation. Addison Wesley, 1988.

[FMS93] Todd Fine, Carol Muehrcke, and Edward A. Schneider. Formal Top

Level Speci�cation for Distributed Trusted Mach. Technical report,

Secure Computing Corporation, 2675 Long Lake Road, Roseville,

Minnesota 55113-2536, April 1993. DTMach CDRL A012.

[Fou93] Open Software Foundation. Trusted mach kernel executive sum-

mary. Technical Report 0034-93A, Open Software Foundation,

November 1993.

[Lam89] Leslie Lamport. A simple approach to specifying concurrent sys-

tems. CACM, 32-1, 1989.

[Lam91] Leslie Lamport. The temporal logic of actions. Technical Report 79,

DEC Systems Research Center, December 1991.

[Loe91a] Keith Loepere. Mach 3 kernel interface. Technical report, Open

Software Foundation, May 1991.

27

[Loe91b] Keith Loepere. Mach 3 kernel principles. Technical report, Open

Software Foundation, March 1991.

[MP81] Z. Manna and A. Pnueli. Veri�cation of concurrent programs: the

temporal framework. In Robert S. Boyer and J Strother Moore,

editors, The Correctness Problem in Computer Science, pages 215{

273. Academic Press, 1981.

[Pnu85] A. Pnueli. Applications of Temporal Logic to the Speci�cation and

Veri�cation of Reactive Systems: A Survey of Current Trends.

Springer-Verlag, New York, 1985.

[Ras86] Richard F. Rashid. Threads of a new system. Unix Review, 4(8),

August 1986.

[Spi89] J.M. Spivey. The Z Notation, A Reference Manual. Prentice Hall,

1989.

